Cho x, y thoả mãn \(x^2+y^2-xy=4\) . Tìm Max, Min \(P=x^2+y^2\)
usechatgpt init successHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$
$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$
$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$
$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$
Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$
đây có phải bài giải phương trình đâu :vv
mà thôi cũng cảm ơn bạn
Cho \(x,y\ne0\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^4}{4}=4\) .
Tìm MIN, MAX của : P= \(xy+2021\)
Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)
Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)
\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)
\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)
\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)
\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)
ĐỀ sai rồi bn ơi
neu x ; y > 0 thi ms tim dc max chu
đề sai nha
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)
Ta có:
P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)
P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)
=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)
Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)
Ta có :
P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)
Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)
<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)
=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)
\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)
Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...
Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)
<=> x=-y=\(\dfrac{1}{\sqrt{3}}\)
usechatgpt init success là gì vậy bạn :))?
\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)
\(\Rightarrow P=8-\left(x-y\right)^2\le8\)
\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)
\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)
\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)
:v ẹc, vậy thôi khỏi dùng ik, lên đây đăng bài mình giải giúp cho.