Cho một điểm M nằm bên trong tam giác đều ABC. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TC
27 tháng 8 2017
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
20 tháng 8 2017
Nếu M nằm trong tam giác ABC thì giả sử BM là cạnh lớn nhất
Ta có : BM luôn nhỏ hơn BC và BA (lớn nhất là bằng BC và BA chỉ xảy ra khi M trùng với A và C)
Nên BM < AC (1)
Xét tam giác MAC theo tính chất của 1 tam giác thì:
MA + MB > AC ( tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh càn lại) (2)
từ (1) và (2) => MA+MC > BM
tương tự vs bất cứ cạnh nào trong 3 tam giác: MA,MB,MC ta đều cm như vậy