Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|
|
Cho M nằm trong tam giác đều ABC chứng minh 1 trong 3 đoạn thẳng MA ,MB ,MC nhỏ hơn tổng 2 đoạn thẳng còn lại
2.
Giả sử \(MA\) là đoạn thẳng bé nhất.
+ Xét \(\Delta AMB\) có:
\(MA< MB+AB\) (theo bất đẳng thức trong tam giác) (1).
+ Xét \(\Delta AMC\) có:
\(MA< MC+AC\) (theo bất đẳng thức trong tam giác) (2).
+ Xét \(\Delta MBC\) có:
\(BC< MB+MC\) (theo bất đẳng thức trong tam giác) (3).
Cộng theo vế (1) vào (2) ta được:
\(MA+MA< MB+MC+AB+AC\)
\(\Rightarrow2MA< MB+MC+AB+AC\)
\(\Rightarrow MA< \frac{MB+MC+AB+AC}{2}.\)
Vì \(\Delta ABC\) đều (gt).
\(\Rightarrow AB=AC=BC\) (tính chất tam giác đều).
\(\Rightarrow AB+AC=2BC\)
\(\Rightarrow MA< \frac{MB+MC+2BC}{2}\)
\(\Rightarrow MA< \frac{MB+MC}{2}+BC\) (4).
Từ (3) \(\Rightarrow\frac{MB+MC}{2}+BC< MB+MC\) (5).
Từ (4) và (5) \(\Rightarrow MA< MB+MC\left(đpcm\right).\)
Vậy trong 3 đoạn thẳng MA, MB, MC mỗi đoạn không lớn hơn tổng của 2 đoạn thẳng kia.
Chúc bạn học tốt!
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)
b)
*Xét ΔABM ta có: AM + BM > AB (1)
*Xét ΔACM ta có: AM + CM > AC (2)
*Xét ΔBMC ta có: BM + CM > BC (3)
Từ (1); (2); (3)
=> AM + BM + AM + CM + BM + CM > AB + AC + BC
=> 2. AM + 2. BM + 2. CM > AB + AC + BC
=> 2. (AM + BM + CM) > AB + AC + BC
Hay: 2. (MA + MB + MC) > AB + BC + CA
c)Gọi I là giao điểm của BM và AC.
Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)
Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB
⇒MC+MB<MI+MB+IC
⇒MC+MB<IB+IC (2)
d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)
Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC
⇒ IB+IC<IA+IC+AB
⇒IB+IC<AC+AB (4)
e)Từ (2) và (4) suy ra MB+MC<AB+AC
f)Áp dụng bđt tam giác, ta có:
AB+AI > BI = MB+MI, CI + MI > MC
=> AB + AI + CI + MI > MB + MI + MC
Mà AI + CI = AC
=> AB + AC > MB + MC [1]
Áp dụng bđt tam giác, ta cũng có:
BA + BC > MA + MC [2],
CA + CB > MA + MB [3]
Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC
=> MA + MB + MC < AB + AC + BC (đpcm)
a) Ta lần lượt xét:
- Trong \(\Delta AMI\), ta có:
\(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)
\(\Leftrightarrow MA+MB< IA+IB\) (1)
- Trong \(\Delta BIC\),ta có:
\(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)
\(\Leftrightarrow IA+IB< CA+CB\) (2)
Từ (1), (2), ta nhận được \(MA+MB< IA+IB< CA+CB,đpcm\)
b) Ta lần lượt xét:
- Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
- Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
- Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)
Cộng theo vế (3),(4),(5), ta được:
\(2\left(MA+MB+MC\right)>AB+BC+AC\)
\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)
Mặt khác dựa theo kết quả cua câu a), ta có:
\(MA+MB< CA+CB\left(6\right)\)
\(MB+MC< AB+AC\left(7\right)\)
\(MA+MC< BA+BC\left(8\right)\)
Cộng theo vế (6),(7),(8), ta được:
\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)
\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)