Cho đẳng thức:x.(x+1).(x+2).(x+3).....(x+2016)=2016 (với x>0)
Chứng tỏ rằng:x<\(\frac{1}{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
\(A=\left(x+1\right).\left(x+2\right).\left(x+3\right)...\left(x+2016\right)=2016\)
\(A=x\left(1+2+3+...+2016\right)=2016\)
\(A=x\cdot\frac{\left(2016+1\right).2016}{2}=x\cdot2033136=2016\)
\(\Rightarrow x=2016:2033136=\frac{2}{2017}\)
\(\Rightarrow\frac{2}{2017}< \frac{1}{2015}\)
\(\Rightarrow x< \frac{1}{2015}\)
mik nhầm rồi! Xin lỗi nha