K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

=>AC=AK và EC=EK

=>AE là trung trực của CK

=>AE vuông góc CK

b: Xét ΔABC vuông tại A có cosA=AC/AB

=>AC/AB=1/2

=>AB=2AC

Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>EB=EA>AC

a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

=>AC=AK và EC=EK

=>AE là trung trực của CK

b: Xét ΔABC vuông tại A có cosA=AC/AB

=>AC/AB=1/2

=>AB=2AC

Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>EA=EB>AC

a) Vì AE là phân giác BAC 

=> CAE = BAE 

Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE 

=> ∆ACE = ∆AKE (ch-gn)

=> AC = AK ( tương ứng )

=> ∆ACK cân tại A

Vì AE là phân giác BAC trong ∆ACK 

=> AE là trung trực ∆ACK

=> AE \(\perp\)CK

https://h.vn/hoi-dap/question/393752.html

tham khảo ở link này( mik gửi cho)

Học tốt!!!!!!!!!!!!!!!

16 tháng 7 2019

cảm ơn bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★

6 tháng 3 2023

a) Xét ΔACE và ΔAKE có:

\(\widehat{ACE}=\widehat{AKE}=90^0\)

AE chung

\(\widehat{CAE}=\widehat{KAE}\) (AE là tia phân giác \(\widehat{BAC}\) mà K ϵ AB ⇒ AE là tia phân giác \(\widehat{KAC}\) )

⇒ ΔACE = ΔAKE (cạnh huyền - góc nhọn)

⇒ AC = AK (2 cạnh tương ứng)

b) Xét ΔABC có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (Tổng 3 góc trong tam giác)

\(60^0+\widehat{ABC}+90^0=180^0\)

\(150^0+\widehat{ABC}=180^0\)

\(\widehat{ABC}=180^0-150^0\)

\(\widehat{ABC}=30^0\)

\(\Rightarrow\widehat{KBE}\left(K\in AB,E\in BC\right)\)

\(\widehat{BAC}=60^0\Rightarrow\widehat{KAC}=60^0\left(K\in AB\right)\)

mà AE là tia phân giác \(\widehat{KAC}\) 

\(\Rightarrow\widehat{KAE}=\dfrac{\widehat{KAC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Rightarrow\widehat{KBE}=\widehat{KAE}=30^0\)

Vì ΔKEB và ΔKEA là hai tam giác vuông

⇒ \(\widehat{KEB}+\widehat{KBE}=\widehat{KEA}+\widehat{KAE}=90^0\) (Tổng hai góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{KEB}=\widehat{KEA}\)

Xét ΔKEB và ΔKEA có:

\(\widehat{BKE}=\widehat{AKE}=90^0\)

AK chung

\(\widehat{KEB}=\widehat{KEA}\)

⇒ ΔKEB = ΔKEA (cạnh góc vuông - góc nhọn kề) ⇒ KB = KA (hai cạnh tương ứng) mà CA = KA ⇒ CA = KB ⇒ CA + CA = KB + KA ⇒ 2AC = AB (đpcm) c) Ta có: \(\widehat{KAE}+\widehat{EAC}=\widehat{KAE}\) (hai góc kề nhau) \(30^0+\widehat{EAC}=60^0\) \(\widehat{EAC}=60^0-30^0\)

\(\widehat{EAC}=30^0\)

Vì ΔAEC là tam giác vuông

\(\widehat{AEC}+\widehat{EAC}=90^0\)

\(\widehat{AEC}+30^0=90^0\)

\(\widehat{AEC}=90^0-30^0=60^0\)

\(\Rightarrow\widehat{BKE}>\widehat{AEC}\left(90^0>60^0\right)\)

⇒ EB > AC (quan hệ góc cạnh tam giác)

7 tháng 8 2016

a) xét hai tam giác vuông AEK và tam giác AKC

 có : AE chung góc KAE = góc CAE  ( AE phân giác góc BAC)

=>  tam giác vuông AEK = tam giác AKC

=> AK=AC ( hai cạnh tương ứng bằng nahu )

gọi CK giao với AE tại H 

ta xét tam giác AHK và tam giác AHC có 

 góc KAE = góc CAE  ( AE phân giác góc BAC)

AH chung 

AK=AC

=>  tam giác AHK = tam giác AHC

=> góc AHK = góc AHC mà góc AHK +góc AHC=180

=> góc AHK = góc AHC=90

=> AE_|_CK

b) xét tam giác vuông CHA có : A+H+C=180

=>góc HCA=180-90-30=60

mà góc ACK=60

=> tam giác  ACK cân tại K

=> CK = KA

tương tự ta cs : CK=HB

=> KA=KB (=CK)

 

 

7 tháng 8 2016

A O B C E D K 1 2 a. xét tam giác ACE và tam giác AKE  có :

AE chung

góc C= góc K ( =90 độ)

A1=A2( gt)

=> tam giác ACE=tam giác AKE ( g.c.g)

=> AC=AK ( 2 cạnh tương ứng )

vì AC=AK => tam giác ACK cân tại a

trong 1 tam giác cân dq phân giác đồng thời là đường cao=> AE vuông góc với AK

b. vì AE là phân giác góc BAC 

=> A1=A2=góc BAC:2=600 : 2= 300 (1)

Xét tam giác ABC có : 

BAC+ABC+ACB=1800

600+900+ABC=1800

=> ABC=1800-900-600=30(2)

Từ (1) và (2) => A1=ABC

xét tam giác ACE và tam giác BKE có :

ACE=BKE (=900)

A1=ABC( CMT)

EC=EK ( theo a)

=> tam giác ACE= tam giác BKE ( g.c.g)

=> AC=KB ( 2 cạnh tương ứng)

mà AC=AK ( theo a)

=> KB=KA (đpcm)

c. vì A2=ABC ( theo b cùng =300)

=> tam giác EAB cân tại E => AE=EB (1)

xét tam giác vuông ACE

vì AE  là cạnh huyền => AE>AC(2)

từ (1) và (2 ) => EB>AC (đpcm)

d. gọi O là giao điểm của AC và BD

xét tam giác AOB có 3 dq cao lần lượt là  AD,OK,BC

=> AD , OK ,BC giao nhau tại O => O,K,E thẳng hàng => AC,BD,KE đồng quy tại O ( đpcm )