K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: \(a< b\)

\(\Rightarrow-3a>-3b\)

\(\Rightarrow-3a+2023>-3b+2023\)

NV
16 tháng 8 2021

\(A=\left(a^2+\dfrac{b^2}{4}+\dfrac{9}{4}+ab-3a-\dfrac{3}{2}b\right)+\dfrac{3}{4}\left(b^2-2b+1\right)+2020\)

\(A=\left(a+\dfrac{b}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2020\ge2020\)

\(A_{min}=2020\) khi \(\left(a;b\right)=\left(1;1\right)\)

1 tháng 4 2018

Ta có : \(a>b\)

\(\Rightarrow-3a< -3b\) (Nhân cả 2 vế của BĐT với -3)

\(\Rightarrow4-3a< 4-3b\) (cộng cả 2 vế của BĐT với 4)

=> đpcm.

25 tháng 12 2022

Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)

Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)

\(=2^{2024}-1\)

Mà \(2B=2^{2024}\)

Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
 

25 tháng 12 2022

Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?

6 tháng 5 2018

Từ a < b => 3a < 3b ( vì 3 >0 ) => 3a + 1 < 3b + 1.

Từ a < b => -2a > -2b ( vì -2 <0 ) => -2a + 1 > -2b +1.

3 tháng 2 2017

2a + 3b ⋮ 7 => 2( 2a + 3b ) ⋮ 7 => 4a + 6b ⋮ 7 

Xét tổng (4a + 6b) + (3a + b)

= (4a + 3a) + (6b + b)

= 7a + 7b

= 7(a + b) ⋮ 7 

=> (4a + 6b) + (3a + b) ⋮ 7 

Mà 4a + 6b ⋮ 7 . Để (4a + 6b) + (3a + b) ⋮ 7 <=> 3a + b ⋮ 7 

Vậy 3a + b ⋮ 7 ( đpcm )

29 tháng 6 2017

cho 2 số tự nhiên a,b : chứng minh 2a+3b chia hết cho 7 <=> 3a+b chia hết cho 7

23 tháng 8 2023

Mình đùa chút nhé:

Cần j chứng minh, thấy nó đúng là đc mà!

23 tháng 8 2023

mình nghĩ c/m là cái điều đấy nó đã đúng sẵn rồi

nên chắc chẳng cần c/m đâu nhỉ =)

7a+2b chia hết cho 2023

31a+9b chia hết cho 2023

Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023

=>63a+18b-62a-18b chia hết cho 2023

=>a chia hết cho 2023

7a+2b chia hết cho 2023

31a+9b chia hết cho 2023

=>31(7a+2b)-7(31a+9b) chia hết cho 2023

=>-b chia hết cho 2023

=>b chia hết cho 2023