giải pt
\(x^2+\sqrt{4x+1}+\sqrt{x-1}=2x+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow5-2x=36\)
\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)
2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)
\(\Leftrightarrow2-x=x+1\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)
\(\Leftrightarrow\left|x-5\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
Lời giải:
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow (x^2-2x)+(\sqrt{4x+1}-3)+(\sqrt{x-1}-1)=0$
$\Leftrightarrow x(x-2)+\frac{4(x-2)}{\sqrt{4x+1}+3}+\frac{x-2}{\sqrt{x-1}+1}=0$
$\Leftrightarrow (x-2)\left[x+\frac{4}{\sqrt{4x+1}+3}+\frac{1}{\sqrt{x-1}+1}\right]=0$
Dễ thấy với mọi $x\geq 1$ thì biểu thức trong ngoặc vuông luôn dương.
$\Rightarrow x-2=0$
$\Leftrightarrow x=2$ (tm)