cần gấp ạ!!!!tìm x biết: (3x-1)(x-3)-2(x-3)=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x - 1)³ + 17 = 710 : 5
(3x - 1)³ + 17 = 142
(3x - 1)³ = 142 - 17
(3x - 1)³ = 125
(3x - 1)³ = 5³
3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
a) 1/4(x-3)+2=1/5
1/4.(x-3) = 1/5-2
1/4.(x-3) = -9/5
x-3 = (-9/5):1/4
x-3 = -36/5
x = -36/5+3
x= -21/5
3(x+3)-x(x+3)=0
(x+3)(3-x) =0
x+3 =0 hoặc 3-x=0 =>x={-3;3}
(x-3)(x2+3x+9)+x(5-x2)=6x
x(x2+3x+9)-3(x2+3x+9)+x(5-x2)=6x
x3+3x2+9x-3x2-9x-27+5x-x3-6x=0
(x3-x3)+(3x2-3x2)+(9x-9x+5x-6x)=27
-x=27
x=-27
a) x2 - 9 = 3( x - 3 )
⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0
⇔ ( x - 3 )( x + 3 - 3 ) = 0
⇔ ( x - 3 ).x = 0
⇔ x - 3 = 0 hoặc x = 0
⇔ x = 3 hoặc x = 0
b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )
⇔ 9x2 + 3 = 6 - 6x - 4
⇔ 9x2 + 6x + 3 - 6 + 4 = 0
⇔ 9x2 + 6x + 1 = 0
⇔ ( 3x + 1 )2 = 0
⇔ 3x + 1 = 0
⇔ x = -1/3
c, \(x\)(\(x\) - 2022) + 4.(2022 - \(x\)) = 0
(\(x\) - 2022).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x-2022=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2022\\x=4\end{matrix}\right.\)
a, ĐK: \(x\ge0;x\ne9\)
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)
b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)
\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)
`(3x-1)(x-3)-2(x-3)=9`
`-> 3x(x-3)-1(x-3)-2x+6=9`
`-> 3x^2-9x-x+3-2x+6=9`
`-> 3x^2-12x+9=9`
`-> 3x^2-12x=0`
`-> x(3x-12)=0`
`->`\(\left[{}\begin{matrix}x=0\\3x-12=0\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\3x=12\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x={0 ; 4}`.