cho f(x)=(x-4)-3(x+1).Tìm xsao cho f(x)=4
giúp mình nha các bạn :D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Khi f(3)
=> 5 . 32 - 1
= 5 . 9 - 1
= 45 - 1
= 44
Khi f(-2)
=> 5 . ( -2 )2 - 1
= 5 . 4 - 1
= 20 - 1
= 19
b,
Khi f(x) = 79
=> 5x2 - 1 = 79
5x2 = 79 + 1
5x2 = 80
=> x2 = 80 : 5
x2 = 16
x2 = 42
=> x = 4
a)\(f\left(3\right)=5\cdot3^2-1=5\cdot9-1=45-1=44\)
\(f\left(-2\right)=5\cdot\left(-2\right)^2-1=5\cdot4-1=20-1=19\)
b)\(f\left(x\right)=79\Leftrightarrow5x^2-1=79\)
\(\Leftrightarrow5x^2=80\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
bây h giải còn kịp ko bạn. mk làm nhé
ta có f(x)= a.x+b
=> f(1)= a+b=1 => a=1-b; b=1-a (1)
f(2)= a.2+b = 4 (2)
Từ 1 và 2 : thay a=1-b
=> (1-b).2+b=4
=>2-2b+b=4
=>2-b.(-1)=4
=>-b=-2
=>b=2
Lại cũng từ 1 và 2 thay b=1-a
=> 2a+1-a=4
=>a+1=4
=>a=3
vậy a=3,b=2
Ta có : m=0 thay vào (d) được :
y = f(x) = (2*0-1)x+1 = -x+1
Vì hệ số a = -1<0 nên hàm nghịch biến
Mà √3 -√2 > √6 - √5 =>f(√3 -√2) < f(√6 - √5)
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
f(x)=(x-4)-3(x+1)=4
=x-4-3(x+1)=4
=x-3(x+1)=4+4=8
=x+1=8-3=5
=x=5-1
=x=4