18/15+x=4/15
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}\)=\(\dfrac{x+y}{1,2+1,8}\)=\(\dfrac{15}{3}\)=5
Vậy x=5.1,2=6
y=5.1,8=9
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}=\dfrac{x+y}{1,2+1,8}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=9\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=-\dfrac{15}{5}=-3\)
=>x=-6; y=-9
`# \text {Ryo}`
`x/2 = y/3` và `x + y = -15`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
`=> x/2 = y/3 = -3`
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=3\cdot\left(-3\right)=-9\end{matrix}\right.\)
Vậy, `x = -6; y = -9.`
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)
\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)
nên x-17=0
hay x=17
Vậy: x=17
b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)
\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)
nên x+20=0
hay x=-20
Vậy: x=-20
\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Rightarrow\frac{x+1}{18}+1+\frac{x+2}{17}+1=\frac{x+3}{16}+1+\frac{x+4}{15}+1\)
\(\Rightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Rightarrow\left(x+19\right).\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
Nên \(x+19=0\)
\(\Rightarrow x=-19\)
Vậy x = -19
`18/15 +x=4/15`
`=> x= 4/15 -18/15`
`=> x=-14/15`
Vậy `x=-14/15`
ko biết nữa