cho tam giác MPQ cân tại M.Đươngừ phân giác MH(H thuộc PQ).Gọi A là trung điểm của MQ và G là giao điểm của PA và MH.Chứng minh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPME và ΔPKE có
PM=PK
góc MPE=góc KPE
PE chung
Do đó: ΔPME=ΔPKE
b: ΔPME=ΔPKE
=>góc PME=góc PKE=90 độ
Xét ΔPKI vuông tại K và ΔPMQ vuông tại M có
PK=PM
góc KPI chung
Do đó: ΔPKI=ΔPMQ
=>PI=PQ
=>ΔPIQ cân tại P
c: EK=EM
EM<EI
Do đó: EK<EI
a: Xet tứ giác MPNQ có
I là trung điểm chung của MN và PQ
nên MPNQ là hình bình hành
b:M đối xứng K qua PQ
nên MK vuông góc với PQ tại trung điểm của MK
=>H là trung điểm của MK
Xét ΔMKN có MH/MK=MI/MN
nên HI//KN
=>KN vuông góc với KM
c: M đối xứng K qua PQ
nên QM=QK
=>QK=PN
Xét tứ giác PQNK có
PQ//NK
PN=QK
Do đó: PQNK là hình thang cân
Bài 2:
b: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
K là trung điểm của GB
I là trung điểm của GC
Do đó: KI là đường trung bình của ΔGBC
Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//KI và NM=KI
Xét tứ giác NMIK có
NM//KI
NM=KI
Do đó: NMIK là hình bình hành
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
Chứng minh gì?
Ý mình là chứng minh tam giác đó, giao điểm đó như thế nào!
Ví dụ: Chứng minh HP=HQ.Chứng minh G là trọng tâm của tam giác MPQ.Tính GM/GH.Gọi giao điểm của QG với MP là B.Chứng minh MH là trung trực của AB