K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4:

a: Δ=(2m+4)^2-4*2*(3m+2)

=4m^2+16m+16-24m-16

=4m^2-8m

Để f(x)>0 với mọi x thì 4m^2-8m<0

=>0<m<2

b: Δ=m^2-4*(-3)*m=m^2+12m

f(x)<0 với mọi x thì m^2+12m<0

=>-12<m<0

15 tháng 11 2021

Bài 3: 

b: 54km/h=15m/s

16 tháng 11 2021

giải giúp em bài 4,6 ạ 

NV
25 tháng 12 2020

\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)

\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)

\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)

28 tháng 12 2020

Dạ em cảm ơn ạ

22 tháng 4 2021

a) Ta có: AB//CD.

=>ABH=BDC (2 góc so le trong).

=> ∆AHB~∆BCD(g.g).

b) ∆ABD có :  DB²=AB²+AD²( Định lý Pitago)

=> DB= 15(cm).

Ta có ∆ABH~∆BCD(cmt).

=>AH/BC=AD/BD.

Hay AH=9.12/15=7,2(cm).

c)Ta có ∆AHB~∆BCD cmt.

=> HBA=CBD. (1)

Ta lại có : CBD= ADH (AB//CD).(2)

Từ 1 và 2 => HAB=ADH.

=>∆DHA~∆AHB(g.g).

S∆DHA/S∆AHB=(AD/AB)²=9/16

d) từ câu (a) và (b) => ∆BCD~∆DHA.

Cm ∆DHA~∆MDA(g.g)

Từ đó  suy ra ∆BDC~∆MDA.

Sau đó cm ∆BCD~∆ADC(g.g).

=> ∆MDA~∆ADC(g.g).

=>Ad/DC=DM/DC.

=>Đpcm.

 

 

 

 

 

 

 

Bài 3: 

c) Ta có: \(\dfrac{2-x}{5}=\dfrac{x+4}{7}\)

\(\Leftrightarrow14-7x=5x+20\)

\(\Leftrightarrow-7x-5x=20-14\)

\(\Leftrightarrow-12x=6\)

hay \(x=-\dfrac{1}{2}\)

Câu 10:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)

\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)

\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)

\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b: \(A=\dfrac{x+2}{x+1}\)

=>A không phụ thuộc vào biến y

Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)

Câu 12:

a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)

b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)

\(x+\dfrac{1}{3}=\dfrac{10}{3}\)

=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)

=>\(x=\dfrac{9}{3}=3\left(loại\right)\)

Vậy: Khi x=3 thì A không có giá trị

c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x^2-4x+5}\)

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ

=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x-2=0

=>x=2

11 tháng 1 2023

ủa bạn ơi mình chưa thấy câu hỏi của bạn 

\(\rightarrow\) đăng lại nhé có khả năng mình sẽ giúp dù hơi bận