K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Trong \(\Delta\)ABC có 

AB2 + AC2 = 32 + 42 = 9 + 16 = 25

BC2 = 52 = 25

=> BC2 = AB2 + AC2 

=> \(\Delta\)ABC vuông tại A ( đ/lý Py-ta-go đảo)

30 tháng 4 2017

Ta có AB^2  + AC^2 = 9 + 16 = 25 

        BC^2 = 25 

kết hợp vào ta đc BC^2 = AB^2 + AC^2 ( định lí pi ta go đảo )

suy ra tam giác vuông ( điều phải chứng minh

5 tháng 6 2019

Câu này dễ mak

Ta có tam giác vuông có 3 cạnh b,c,a với h là đường cao ứng với cạnh huyền a, ta có

+) b^2 + c^2 = a^2 (Định lí Pi-ta-go)

+) ah = bc(Hệ thức lượng)

Ta có:

+) (b + c)^2 + h^2 = b^2 + 2bc + c^2 + h^2 = a^2 + 2ah + h^2

+) (a + h)^2 = a^2 + 2ah + h^2

Từ đây suy ra: (b + c)^2 + h^2 = (a + h)^2

=> Tam giác có 3 cạnh là b + c; a+ h và h là tam giác vuông (Định lí Py-ta-go đảo)

24 tháng 1 2017

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 2 2018

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

25 tháng 11 2020

- Giả sử tam giác ABC vuông tại A . Theo bài ra , ta có :

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\left(1\right)\)

- Áp dụng đlí Py - ta - go cho tam giác vuông ABC ( \(\widehat{A}=90^o\)

Ta có : \(BC^2=AB^2+AC^2\)

           \(\Leftrightarrow125^2=\left(\frac{3}{4}AC\right)^2+AC^2\)

           \(\Leftrightarrow15625=\frac{9}{16}AC^2+AC^2\)

           \(\Leftrightarrow15625=\left(\frac{9}{16}+1\right)AC^2\)

            \(\Leftrightarrow\frac{25}{16}AC^2=15625\)

            \(\Leftrightarrow AC^2=\frac{15625.16}{25}\)

           \(\Leftrightarrow AC=\sqrt{\frac{15625.16}{25}}=\frac{125.4}{5}=100\left(cm\right)\)

Thay AC = 100cm vào (1) , ta được :

\(AB=\frac{3}{4}.100=75\left(cm\right)\)

- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) đường cao AH , ta có :

\(AB^2=BH.BC\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{75^2}{125}=45\left(cm\right)\)

Ta lại có : BC = BH + HC

                125 = 45 + HC

                HC = 125 - 45 = 80 ( cm )

Vậy : AB = 75 cm

         AC = 100 cm

         HC = 80 cm

         BH = 45 cm

22 tháng 11 2016

Bài 4:

Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM)   (2 góc trong cùng phía)
Mà  là góc ngoài của  nên 
 
 
 AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
  (2 góc so le trong)

Xét  và  có:
 
AH = DE (vì AD +DH = DH + HE)
 (ch/minh trên)
  (cạnh góc vuông - góc nhọn)  DF = BH (2 cạnh tương ứng)
Xét  và  có:

HE = AD (gt)
BH = DF (ch/minh trên)

  (2 cạnh góc vuông)   (2 góc tương ứng)
 BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác:   BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)

14 tháng 3 2020

ccccccccccccccccccccccccccccccccccccccc

28 tháng 2 2017

theo định lý pytaogo thì : tổng bình phương 2 cạnh góc vuông = bình phương cạnh huyền nên bình phương cạnh huyền lớn hơn bình phương 2 cạnh góc vuông (ko phải tổng nhé)=> cạnh huyền là cạnh lớn nhất trong tam giác vuông .

 Tk mình nha , chúc bạn học tốt

7 tháng 2 2018

bình phương cạnh huyền = tổng bình phương. Mình nhớ py- ta-go làm gì có dạy ở Tiểu học nhỉ

dạy ở trường  cấp hai lớp 7

5 tháng 6 2019

tham khảo nhé . 

 gọi K là giao điểm của ED và BC , vẽ DM vuông góc với AH ở M. 
Ta có DM // BC ( tự cm ) => MD /CH = AD / AC = AM / AH = 1 / 3 ( do AD = 1/3 AC ) 
=> MD = CH/3 ( * ) và AM = AH/3 = EH ( do EH = AH/3 ) 
ta có AM = EH /3 => AM = MH / 2 = EH => EH = EM / 3
ta lại có HK / MD = EH / EM = 1/ 3 ( ** ) 
từ ( *) và ( ** ) ta có HK = CH / 9 . 
ta có AH^2 = BH.CH = 9 (EH^2) = BH.9HK 
=> EH^2 = BH.HK => tam giác BEK vuông ở E mà D thuộc EK nên BÊD = 90. 

14 tháng 10 2022

*Kẻ DM ⊥ AH ( M ∈ AH )
 Xét △AHC có : MD // BC 
=> AM/AH = AD/AC ( Ta-lét)
=> AM/AH=HE/AH ( = AD/AC = 1/3 )
=> AM = HE
 Ta có : AH + HE - AM = MH => AH = MH
 Xét △EMD ( góc EMD = 90 ) 
=> ME^2 + MD^2 = DE^2 ( Pytago )                             (1)
Tương tự với các : +△BHE => BE^2 = BH^2 + HE^2   (2)
                              +△ABH => BH^2 = AB^2 - AH^2
                              +△AMD => MD^2 = AD^2 - AM^2
                              +△ABD => BD^2 = AB^2 + AD^2
Cộng (1) với (2), ta đc : 
   DE^2 + BE^2 = ME^2 + MD^2 + BH^2 - HE^2
<=> DE^2 + BE^2 = AH^2 + AD^2 - AM^2 + AB^2- AH^2 + AM^2
<=> DE^2 + BE^2 = AD^2 + AB^2
=> DE^2 + BE^2 = BD^2
=> △BDE vuông tại E ( Pytago đảo )
=> góc BED = 90 -> đcpcm
( Có thể có sai sót lúc làm mong đóng góp ) =))

9 tháng 4 2022

\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụngm giác là tam giác cân.(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?(3) Thế nào là tam giác vuông cân? (4) Thế...
Đọc tiếp

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụng

m giác là tam giác cân.

(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.

(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau

(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?

(3) Thế nào là tam giác vuông cân? (4) Thế nào là tam giác đều? (5) Nêu các tính chất của tam giác cân. (6) Nêu các tính chất của tam giác vuông cân. (7) Nêu các tính chất của tam giác đều. c) Đố bạn nêu chính xác các tính chất sau: (1) Nếu ba cạnh của tam giác này .... tam giác kia, thì hai tam giác đó bằng

(2) Nếu hai cạnh và góc xen giữa của tam giác này .... tam giác kia, thì giác đó bằng nhau.

(3) Nếu một cạnh và hai góc kề của tam giác này .... tam giác kia, thì hai ta đó bằng nhau.

(4) Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vụ .... tam giác vuông kia, thì hai tam giác đó bằng nhau.

(5) Nếu cạnh huyền và một góc nhọn của tam giác vuông này .... tam giá kia, thì hai tam giác đó bằng nhau. | (6) Nếu hai cạnh góc vuông của tam giác vuông này .... tam giác vuông ki tam giác đó bằng nhau.

6 tính chất tam giác vuông cân

(7) Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này .... vuông kia, thì hai tam giác đó bằng nhau.

(8) Trong một tam giác vuông, bình phương của cạnh huyền bằng... cạnh g (9) Nếu một tam giác có bình phương của một cạnh bằng... đó là tam gi

 

0