cho 2 số thực x,y thão mãn x>y;xy=1. tìm GTNN của biểu thức
\(M=\frac{x^2+y^2}{x-y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có giá trị tuyệt đối của số âm hay dương đều là số dương
=>có 20 cặp x,y
nếu x và y\(\ge\)0
suy ra 20 =|1|+|9|=|2|+|18|=...=20+0
có 11 cặp số
nếu x và y < 0
suy ra 20 = |-1|+|-19|=|-2|+|-18|=....=|-10|+|-10|
có10 cặp số
nếu x<0 và y>0 hoặc x>0 và y<0
suy ra 20=|-1|+|2|=|1|+|-2|=....=|10|+|-10||=|-10|+|10|
có 20 cặp số
vậy có tất cả 41 cặp số
khi m=2 ta có hệ pt:
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x+\dfrac{2}{3}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x=\dfrac{7}{3}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)
vậy khi m=2 thì hệ pt có nghiệm duy nhất\(\left\{\dfrac{2}{3};\dfrac{5}{3}\right\}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=3-2y=3-2\cdot\dfrac{2}{3}=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{5}{3};\dfrac{2}{3}\right)\)
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
Bài này căng đây :))
\(P=x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)=x^4-x^2y^2+y^4\)
\(=\left(x^4+2x^2y^2+y^4\right)-3x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=1-3x^2y^2\)
Ta có :\(3x^2y^2\ge0\forall x;y\)\(\Rightarrow1-3x^2y^2\le1\forall x;y\)có GTNN là 1
Dấu "=" xảy ra khi\(\hept{\begin{cases}x^2y^2=0\\x^2+y^2=1\end{cases}\Rightarrow\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}}\)
Vậy GTNN của P là 1 tại \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)
t éo biết làm đâu t chỉ chém bừa thôi nhé . đúng thì đúng mà sai thì đừng chửi t ngu t ms lp 7
\(x^6+y^6=\left(x^3\right)^2+\left(y^3\right)^2=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4\right).\) t cx éo thuộc hẳng đẳng thức đâu :p
mà x^2+y^2=1
\(\left(x^4-x^2y^2+y^4\right)=\frac{1}{2}.2\left(x^4-x^2y^2+y^4\right)\) cái chỗ này t chỉ nhân 2 với x^2y^2 thôi ko nhân với x^4 cả y^4 nhé
\(\frac{1}{2}\left(x^2-y^2\right)^2\ge0\) nợ 2 ở chỗ x^2 cả y^2 nhé
suy ra \(\left(x^2-y^2\right)^2\ge0\Leftrightarrow x^2\ge y^2\)
vậy giá trị nhỏ nhất của P là \(y^2\) dấu = xảy ra khi x^2=y^2 mà dấu = xảy ra thì suy ra \(x^2+y^2=1\Rightarrow x^2=y^2=\frac{1}{2}\)
kết luận Min của P là 1/2 chúa Pain ko bao giờ sai @@@@
\(A=2x^2+16y^2+\frac{2}{x}+\frac{3}{y}\)
\(\frac{A}{2}=B=x^2+8y^2+\frac{1}{x}+\frac{3}{2y}=x^2+2z^2+\frac{1}{x}+\frac{3}{z}\)(x+z>=2)
\(B=\left(x-z\right)^2+\left(xz+xz+\frac{1}{z}+\frac{1}{x}\right)+\left(z^2+\frac{1}{z}+\frac{1}{z}\right)\)
\(\left(x-z\right)\ge0\) đẳng thức khi x=z
<=>\(-10\le\frac{2}{3}x-10\le10\)
<=>\(0\le x\le30\)
tick nha
\(M=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\sqrt{2}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{\sqrt{6}+\sqrt{2}}{2}\\y=\frac{\sqrt{6}-\sqrt{2}}{2}\end{cases}}\)
mới học lớp năm thui