K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

\(A=2x^2+16y^2+\frac{2}{x}+\frac{3}{y}\)

\(\frac{A}{2}=B=x^2+8y^2+\frac{1}{x}+\frac{3}{2y}=x^2+2z^2+\frac{1}{x}+\frac{3}{z}\)(x+z>=2)

\(B=\left(x-z\right)^2+\left(xz+xz+\frac{1}{z}+\frac{1}{x}\right)+\left(z^2+\frac{1}{z}+\frac{1}{z}\right)\)

\(\left(x-z\right)\ge0\) đẳng thức khi x=z

2 tháng 11 2018

HD (thầy Minh): Ta có:  

22 tháng 2 2018

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

22 tháng 2 2018

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)

8 tháng 4 2016

nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)

x-2y>=0   và x>=2y => 3x/y>=6   => 4M >=10

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=

28 tháng 6 2018

mình sửa lại đề chút nhé!

tìm GTLN của P nha

6 tháng 7 2020

\(P\ge2x^2+16y^2+\frac{2}{x}+\frac{3}{y}+2\left(2-x-2y\right)\)

\(=\,{\frac { 2\left( x+1 \right) \left( x-1 \right) ^{2}}{x}}+{\frac { \left( 4\,y+3 \right) \left( 2\,y-1 \right) ^{2}}{y}}+14 \geq 14\)

Đẳng thức xảy ra khi $x=1,\,y=\frac{1}{2}.$

PS: Có một cách dùng AM-GM$,$ bạn tự làm:P