Cho f(x) = ax^2 + bx + c có f(1) , f(4) , f(9) là các số hữu tỉ
CMR: KHi đó a,b,c là các số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)
Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)
Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)
Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)
Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)
=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)
Ta có đpcm
Ta có:
f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0
Suy ra⎡⎢ ⎢ ⎢ ⎢⎣{f(−2)>0f(3)<0{f(−2)<0f(3)>0⇒f(−2).f(3)<0
vậy......
\(13a+b+2c=0\Rightarrow b=-13a-2c\)
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=\left(4a-2\left(-13a-2c\right)+c\right)\left(9a+3\left(-13a-2c\right)+c\right)\)
\(=\left(4a+26a+4c+c\right)\left(9a-39a-6c+c\right)\)
\(=\left(30a+5c\right)\left(-30a-5c\right)\)
\(=-\left(30a+5c\right)^2\le0\)
-Dấu "=" xảy ra khi \(a=-b=-\dfrac{1}{6}c\)
Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=36a^2-6b^2+c^2-6ab+13ac+bc\)
Thay b = - 13a - 2c, ta có
\(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)
\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)
\(-25\left(6a+c\right)^2\le0\forall a;c\)
Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)
Cách này đơn giản hơn: Có \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\)
Do đó \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên
\(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)