cho a > 1 , b >2. Tìm giá trị nhỏ nhất của P= \(\dfrac{a^2+b^2+1}{a+b}+\dfrac{1}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)
Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)
Cộng vế:
\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)
\(A=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(A\ge2\sqrt{a^2\cdot\dfrac{1}{16a^2}}+2\sqrt{b^2\cdot\dfrac{1}{16b^2}}+\dfrac{15}{16}\cdot2\cdot\sqrt{\dfrac{1}{a^2b^2}}\)
\(A\ge1+\dfrac{15}{8ab}\ge1+\dfrac{15}{2\left(a+b\right)^2}\ge\dfrac{17}{2}\)
"="<=>x=y=0,5
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+4\geq 4b$
$\Rightarrow a^2+b^2\geq 2a+4b-5$
$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$
$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$
$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$
Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$
\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)