Tìm giá trị nhỏ nhất của biểu thức
B = x.(x - 3).(x + 1).(x +.4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)
\(=\left(x^2-3x\right)\left(x^2+5x+4\right)\)
Ta thấy : \(x^2-3x=x^2-3x.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\)
\(x^2+5x+4=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{9}{4}=\left(x+\frac{5}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\)
\(\Rightarrow\left(x^2-3x\right)\left(x^2+5x+4\right)\ge\frac{-9}{4}.\frac{-9}{4}=\frac{81}{16}\)
\(Min_B=\frac{81}{16}\Leftrightarrow\)x = 0 hoặc x = 3
B = x(x - 3)(x + 1)(x + 4)
= (x2 + x)(x2 + x - 12)
Đặt (x2 + x) = a thì ta có:
B = a(a - 12) = a2 - 12a + 36 - 36
= (a - 6)2 - 36 \(\ge\)- 36
Vậy GTNN là B = - 36 đạt được khi a = 6 hay x = - 3 hoặc x = 2