K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có 

MB=MC

\(\widehat{EBM}=\widehat{FCM}\)

Do đó: ΔMEB=ΔMFC

Suy ra:ME=MF và EB=FC

Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC

và EB=FC

nên AE=AF

Ta có: AE=AF

nên A nằm trên đường trung trực của FE(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của FE(2)

từ (1) và (2) suy ra AM là đường trung trực của FE

hay AM\(\perp\)FE

12 tháng 4 2021

a) Ta có: \(AH\) là phân giác \(\widehat{EAF},AH\perp EF\rightarrow\Delta AEF\)cân tại \(A\)

b) Kẻ \(BG//AC,G\in EF\rightarrow\widehat{BGK}=\widehat{GKF}\)

Ta có: \(BK//EF\rightarrow\widehat{BKG}=\widehat{KGF}\)

Mà \(\Delta BKG,\Delta FGK\)chung cạnh \(KG\)

\(\rightarrow\Delta BKG=\Delta FGK\left(g.c.g\right)\)

\(\rightarrow BG=KF\)

Ta có: \(BG//AC\rightarrow\widehat{GBM}=\widehat{MCF}\)

Mà \(BM=MC\)vì \(M\)là trung điểm \(BC,\widehat{BMG}=\widehat{FMC}\)

\(\rightarrow\Delta BMG=\Delta CMF\left(c.g.c\right)\)

\(\rightarrow BG=CF\)

\(\rightarrow KF=CF\left(=BG\right)\)

c) Ta có: \(BG//AC\)

\(\rightarrow\widehat{BGE}=\widehat{AFE}=\widehat{AEF}=\widehat{BEG}\)

\(\rightarrow\Delta BGE\)cân tại \(B\rightarrow BE=BG\)

\(\rightarrow BE=CF\)

Mà \(AE=À,AE=AB+BE,AF=AC-C\)

\(\rightarrow AE+AF=AB+BE+AC-CF\)

\(\rightarrow2AE=AB+AC\)vì \(BE=CF\)

\(\rightarrow AE=\frac{AB+AC}{2}\)

12 tháng 4 2021

help me mọi người ơi ai xong đầu tiên mk k cho

19 tháng 4 2016

b.Cm AB+AC-BC/2 < AM < AB+AC/2