K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Câu hỏi của ミ★¢тƙ_⁰⁷★彡 - Toán lớp 8 - Học toán với OnlineMath

26 tháng 3 2020

\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)

\(=2-\frac{1}{1+a}+2-\frac{1}{1+b}+2-\frac{1}{1+c}=6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)

Xét \(f\left(x\right)=0\)có 3 nghiệm a; b ; c 

Theo định lí viet ta có: 

\(a+b+c=0\)

\(ab+bc+ac=-3\)

\(abc=-1\)

=> \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{1+bc+b+c+1+ac+a+c+1+ab+a+b}{1+ab+a+b+c+abc+ab+ac}\)

\(=\frac{3+\left(ab+ac+bc\right)+2\left(a+b+c\right)}{1+\left(ab+ac+bc\right)+\left(a+b+c\right)+abc}=\frac{3-3+0}{1-3+0-1}=0\)

=> \(A=\)\(6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)= 6 - 0 = 6.

26 tháng 3 2020

Anh học phổ thông mà hỏi câu lớp 8 là sao?

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?

a: A=x^3-2x^2+5x-1

B=x^3-3x^2+3x-2

P=A+B=2x^3-5x^2+8x-3

Q=A-B=x^2+2x+1

b: Bậc của P lớn hơn Q

c: Q(-1)=(-1)^2+2*(-1)+1=0

=>x=-1 là nghiệm của Q

24 tháng 3 2023

Cảm ơn  bạn ạ

2:

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

=>góc MAB=góc MBA

3:

a: Hệ số là -2/3

Biến là x^2;y^7

Bậc là 9

b: \(=3x^2y^2\left(-2\right)xy^5=-6x^3y^7\)

a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc...
Đọc tiếp

a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc với Oy (B thuộc Oy) Chứng minh: - MA= MB - đường thẳng BM cắt Ox tại H. Đường thẳng AM cắt Oy tại K. Chứng minh tam giác AMH = tam giác BMK - gọi I là giao điểm của tia Oz và HK. chứng minh OI vuông góc với HK - cho góc xOy = 60⁰. Chứng minh tâm giác OHK đều e) cho tam giác ABC cân tại A có AB = 15cm, BC= 18cm. Vẽ đường phân giác AH của góc BAC ( H thuộc BC). Chứng minh: - tam giác ABH = tam giác ACH - vẽ trung tuyến BM ( M thuộc AC ) cắt AH tại G. Chứng minh G là trọng tâm của tam giác ABC - tính độ dài AH. Từ đó tính độ dài AH - từ H vẽ HK// AC. Chứng minh C,G,K thẳng hàng

1

e:

Xét ΔABH và ΔACH có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔABH=ΔACH

Xét ΔABC có

AH,BM là trung tuyến

AH cắt BM tại G

=>G là trọng tâm

BH=CH=9cm

=>AH=căn 15^2-9^2=12cm

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trug điểm của AB

=>C,G,K thẳng hàng

d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

góc AOM=góc BOM

=>ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAH vuông tại A và ΔMBK vuông tại B có

MA=MB

góc AMH=góc BMK

=>ΔMAH=ΔMBK

OA+AH=OH

OB+BK=OK

mà OA=OB và AH=BK

nên OH=OK

=>ΔOHK cân tại O

mà OI là phân giác

nên OI vuông góc HK

b: A(x)=0

=>x-7=0

=>x=7

1 tháng 7 2023

a) \(A\left(x\right)=2x^3+2-3x^2+1=2x^3-3x^2+3\)

Có bậc là 3

\(B\left(x\right)=2x^2+3x^3-x-6=3x^3+2x^2-x-6\)

Có bậc 3

b) Thay \(x=2\) vào A(x) ta được:

\(2\cdot2^3-3\cdot2^2+3=2\cdot8-3\cdot4+3=16-12+3=7\)

Vậy giá trị của A(x) tại x=2 là 7

c) \(A\left(x\right)+B\left(x\right)\)

\(=2x^3-3x^2+3+3x^3+2x^2-x-6\)

\(=5x^3-x^2-x-3\)

\(A\left(x\right)-B\left(x\right)\)

\(=\left(2x^3-3x^2+3\right)-\left(2x^2+3x^3-x-6\right)\)

\(=2x^3-3x^2+3-2x^2-3x^3+x+6\)

\(=-x^3-5x^2+x+9\)

a: A(x)=2x^3-3x^2+3

Bậc là 3

B(x)=3x^3+2x^2-x-6

Bậc là 3

b: A(2)=2*2^3-3*2^2+3=7

c; A(x)+B(x)

=2x^3-3x^2+3+3x^3+2x^2-x-6

=5x^3-x^2-x-3

A(x)-B(x)

=2x^3-3x^2+3-3x^3-2x^2+x+6

=-x^3-5x^2+x+9

Ta có:

\(P\left(x\right)=2x\left(x^3-3x+1\right)-\left(x^3-3x+1\right)+x^2-4\)

Do đó: \(P\left(a\right).P\left(b\right).P\left(c\right)=\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)\)

Ta có:

\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-3x+1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+ac+bc=-3\\abc=-1\end{matrix}\right.\)

C1: \(\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)=\left(abc\right)^2-4\left(a^2b^2+b^2c^2+c^2a^2\right)+16\left(a^2+b^2+c^2\right)-4^3\)

\(=1-4.9+16.6-4^3=-3\)\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=-3\)

C2: Biến đổi thêm một chút

Ta có: \(a,b,c\ne0\) nên 

 \(a^3-3a+1=0\Leftrightarrow a\left(a^2-3\right)+1=0\)\(\Rightarrow a^2-3=\dfrac{-1}{a}\)

Tương tự...

 \(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=\left(-\dfrac{1}{a}-1\right)\left(-\dfrac{1}{b}-1\right)\left(-\dfrac{1}{c}-1\right)\)

\(=-\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)\)\(=-\dfrac{a+1}{a}.\dfrac{b+1}{b}.\dfrac{c+1}{c}=abc+ac+bc+ab+a+b+c+1=-1-3+1=-3\)

23 tháng 3 2021

undefined

23 tháng 3 2021

a)\(A=1+x+x^2+x^3+..........+x^{2012}\)

+)Thay x=1 vào biểu thức đc:

\(A=1+1+1^2+1^3+..............+1^{2012}\)

               Có 2013 số hạng

\(\Rightarrow A=1.2013=2013\)

b)\(B=1-x+x^2-x^3+..............-x^{2011}\)

\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)

+)Thay x=1 vào biểu thức được:

\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)

\(\Rightarrow B=0+0+......................+0=0\)

+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)

Vậy C=2013

Chúc bn học tốt