Chứng minh rằng abcdef chia hết cho 7 thì fabcde chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta dùng ký hiệu ¯ (dấu gạch đầu) để chỉ một số có nhiều chữ số
Theo đề bài ¯abcdef chia hết cho 7 ⇒ 10.(¯abcde) + f chia hết cho 7 (♥)
Ta cần cm ¯fabcde chia hết cho 7
Ta có 10.(¯fabcde) = 10.(10⁵.f + (¯abcde)) = 10⁶.f + 10.(¯abcde) = (10⁶ - 1)f + [10.(¯abcde) + f]
Mà:
10⁶ - 1 chia hết hết cho 7. Có nhiều cách để kiểm tra điều này:
1) 10⁶ - 1 = 999999 bấm máy thấy nó chia hết cho 7 :D
2) Sử dụng dấu hiệu chia hết cho 7
3) Dùng tính chất của đồng dư thức: 10⁶ ≡ 3⁶ = (9)³ ≡ 2³ ≡ 1 (mod 7) ⇒ 10⁶ - 1 chia hết cho 7
10.(¯abcde) + f chia hết cho 7 do (♥)
⇒ 10.(¯fabcde) chia hết cho 7
⇒ (¯fabcde) chia hết cho 7 (vì 10 và 7 nguyên tố cùng nhau)
Đó là đpcm
abcdef = 1000.abc + def = 1001.abc - abc + def = 7.143. abc - (abc - def) chia hết cho 7
abc+def = a*100000+b*10000+c*1000+d*100+e*10+f*1 = (a*b*c+d*e*f)*(100000+10000+1000+100+10+1) =(a*b*c+d*e*f)*111111 vì 111111 chia hết cho 37 nên (a*b*c+d*e*f) chia hết cho 37 => DPCM
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
xét :abcdef - 3 x fabcde
= 10 x abcde + f - 3 x(100000f +abcde)
= 10 x abcde - 3 x abcde - 300000f +f
= 7 x abcde - 299999f
Vì 299999f chia hết cho 7 va 7 x abcde chia hết cho 7 nên suy ra 3 x fabcde chia hết cho 7 hay fabcde chia hết cho 7