Chung minh : (-a/b)n = a/bn ( n la so chan; b khac 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n : hết cho 2
=> (n+4) : hết cho 2
=> (n+3).(n+4) : hết cho 2. N là số chẵn
Nếu n là số lẻ
=> (n+3) : hết cho 2
=> (n+3).(n+4) : hết cho 2. N là số chẵn
xét n = 2k ( k \(\in\)N ) thì :
( n + 3 ) ( n + 4 )
= ( 2k + 3 ) ( 2k + 4 )
= ( 2k + 3 ) . 2 . ( k + 2 ) \(⋮\)2 là số chẵn
xét n = 2k + 1 ( k \(\in\)N ) thì :
( 2k +1 + 3 ) + ( 2k + 1 + 4 )
= ( 2k + 4 ) ( 2k + 5 )
= 2 . ( k + 2 ) . ( 2k + 5 ) \(⋮\)2 là số chẵn
Vậy ...
a: \(M=a^2+2a-a^2+5a-7=7a-7⋮7\)
b: \(N=a^2+a-6-\left(a^2-a-6\right)=a^2+a-6-a^2+a+6\)
=2a là số chẵn(đpcm)
Với n là số tự nhiên lẻ thì: n+2 lẻ, n+5 chẵn
=>(n+2)(n+5) chẵn
Với n là số tự nhiên chẵn thì: n+2 chẵn, n+5 lẻ
=>(n+2)(n+5) chẵn
TH1:
voi n la số chan thi n+4 la so chan
va n+7 la so le
ma so chan nhan vs so le la so chan
=>(n+2).(n+5) la so chan
TH2:
Với n la so le thì n+2 la so le
va n+5 la so chan
ma so lenhan vs so chan la so chan
=>(n+2).(n+5) la so chan
Xét 4 trường hợp: (lưu ý: nhân với số chẵn thì tích đó chẵn)
* TH1: a chẵn, b chẵn => a*b(a+b) chẵn
* TH2: a chẵn, b lẻ => a*b(a+b) chẵn
* TH3: a lẻ, b chẵn => a*b(a+b) chẵn
* TH4: a lẻ, b lẻ => a + b chẵn => a*b(a+b) chẵn
Vậy P = a*b(a+b) là số chẵn với mọi a, b \(\in\)N
vì n chẵn => n=2k (k thuộc N)
\(\Rightarrow A=20^n+16^n-3^n-1=20^{2k}+16^{2k}-3^{2k}-1\)
\(=\left(20^{2k}-1\right)+\left(16^{2k}-3^{2k}\right)\)
+Có: \(20^{2k}-1⋮20-1=19\forall k\in N\)
\(16^{2k}-3^{2k}⋮\left(16+3\right)\left(16-3\right)\in k\forall N\Rightarrow16^{2k}-3^{2k}⋮19\)
=> A chia hết cho 19
\(A=\left(20^{2k}-3^{2k}\right)+\left(16^{2k}-1\right)\)
tương tự ta có \(20^{2k}-3^{2k}⋮17\)và \(16^{2k}-1⋮17\)
suy ra A chia hết cho 17 => A chia hết cho 17 và 19
Mà ƯCLN(17,19)=1
=> A chia hết cho 323