K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/3-1/3^2+...-1/3^20

=>3A=1-1/3+...-1/3^19

=>4A=1-1/3^20

=>\(A=\dfrac{3^{20}-1}{3^{20}\cdot4}\)

4 tháng 10 2021

ừ bài nâng cao mà bạn ơi :)))

4 tháng 10 2021

\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)

\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)

\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)

\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)

29 tháng 10 2023

\(\dfrac{3}{12}+\dfrac{1}{4}=\dfrac{3:3}{12:3}+\dfrac{1}{4}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\dfrac{4}{10}+\dfrac{3}{5}=\dfrac{4:2}{10:2}+\dfrac{3}{5}=\dfrac{2}{5}+\dfrac{3}{5}=\dfrac{5}{5}=1\)

\(\dfrac{12}{27}+\dfrac{2}{9}=\dfrac{12:3}{27:3}+\dfrac{2}{9}=\dfrac{4}{9}+\dfrac{2}{9}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{7}{3}+\dfrac{20}{15}=\dfrac{7}{3}+\dfrac{20:5}{15:5}=\dfrac{7}{3}+\dfrac{4}{3}=\dfrac{11}{3}\)

18 tháng 6 2021

`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5

`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`

`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`

`=(5/2*sqrt5):2/5`

`=25/4sqrt5`

 

18 tháng 6 2021

`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`

`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`

`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`

`=12sqrt3-16/sqrt3`

14 tháng 4 2023

b,     B        =                       \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\)  + \(\dfrac{1}{2^3}\) -   \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

\(\times\)  B       =                 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

\(\times\) B + B  =                1  -  \(\dfrac{1}{2^{100}}\)

3B             =              ( 1 - \(\dfrac{1}{2^{100}}\)

             B =               ( 1 - \(\dfrac{1}{2^{100}}\)) : 3

14 tháng 4 2023

       A              =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\) 

A\(\times\)  3             =   3 +  1 + \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+  \(\dfrac{1}{3^{n-1}}\) 

\(\times\) 3 - A        = 3 - \(\dfrac{1}{3^n}\)

       2A           = 3  - \(\dfrac{1}{3^n}\)

         A           = ( 3 - \(\dfrac{1}{3^n}\)) : 2

30 tháng 1 2023

\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

Biến đổi tử số 

\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)

= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)

\(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)

= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)

Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

\(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)

Vậy A = 20

30 tháng 1 2023

c.ơn nhìu a

23 tháng 4 2023

1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)

\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)

\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)

\(=\dfrac{19}{18}+\dfrac{5}{18}\)

\(=\dfrac{24}{18}\)

\(=\dfrac{4}{3}\)

2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=\dfrac{1}{15}+\dfrac{7}{15}\)

\(=\dfrac{8}{15}\)

3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)

\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=\dfrac{1}{3}-\dfrac{1}{10}\)

\(=\dfrac{7}{30}\)

4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)

\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)

\(=\dfrac{5}{7}.-\dfrac{7}{11}\)

\(=-\dfrac{35}{77}\)

\(=-\dfrac{5}{11}\)

24 tháng 8 2023

a) \(\dfrac{21}{15}\) + \(\dfrac{2}{5}\) = \(\dfrac{9}{5}\)
b)  \(\dfrac{6}{16}\) + \(\dfrac{1}{8}\) = \(\dfrac{1}{2}\)

c)  \(\dfrac{3}{12}\) + \(\dfrac{3}{4}\) = 1

Bài 1:

a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)

\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)

\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)

\(=\dfrac{5}{2}\sqrt{5}\)

c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)

\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Bài 2:

e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=\left(3x-4\right)^2\)

\(\Leftrightarrow9x^2-24x+16+6-x=0\)

\(\Leftrightarrow9x^2-25x+22=0\)

\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)

Vậy: Phương trình vô nghiệm