K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

Mình không trả lời được, nhưng mình có thể hỏi thử xem mình ra câu này có đúng không nhé.

1.

c, \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}=1+\dfrac{-2}{\sqrt{x}-2}\)

Để A là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{-2}{\sqrt{x}-2}\ge0\\1+\dfrac{-2}{\sqrt{x}-2}\inℤ\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x}-2}\le1\\\sqrt{x}-2\inƯ\left(-2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-\sqrt{x}}{\sqrt{x}-2}\le0\\\sqrt{x}-2\in\left\{\pm1;\pm2\right\}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>4\\x\in\left\{0;1;9;16\right\}\end{matrix}\right.\)

\(\Rightarrow x\in\left\{9;16\right\}\)

Vậy...

AH
Akai Haruma
Giáo viên
20 tháng 8 2023

Bài 1:

1.

$\frac{1}{2}+\frac{3}{4}-\frac{4}{5}=\frac{5}{4}-\frac{4}{5}=\frac{9}{20}$

2.

$=(\frac{4}{29}.\frac{3}{13}+\frac{3}{13}.\frac{25}{29})+(\frac{-19}{26}+\frac{-7}{26})$

$=\frac{87}{29.13}+(-1)$

$=\frac{3}{13}-1=\frac{-10}{13}$

 

AH
Akai Haruma
Giáo viên
20 tháng 8 2023

Bài 2:

a. 

$x=\frac{-7}{8}.\frac{4}{21}-\frac{2}{3}=\frac{-5}{6}$
b.

$\frac{1}{4}x=0,2-\frac{3}{4}=\frac{-11}{20}$

$x=\frac{-11}{20}:\frac{1}{4}=\frac{-11}{5}$

15 tháng 12 2023

Bài IV:

1: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

2: Xét (O) có

MA,MB là các tiếp tuyến
Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD tại C

=>AC\(\perp\)DM tại C

Xét ΔADM vuông tại A có AC là đường cao

nên \(MC\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)

3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc HAM

Xét ΔAHM có AI là phân giác

nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)

Xét ΔOHA vuông tại H và ΔOAM vuông tại A có 

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOAM

=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)

=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)

Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)

=>\(HO\cdot IM=IO\cdot IH\)

9 tháng 8 2021

\(MA^4+MB^4+MC^4+MD^4\)

\(=\left(MA^2+MC^2\right)^2+\left(MB^2+MD^2\right)^2-2MA^2.MC^2-2MB^2.MD^2\)

\(=32R^4-8S_{MAC}^2-8S_{MBD}^2\)

\(=32R^4-8R^2\left(MH^2+MK^2\right)\) với H,K lần lượt là hình chiếu vuông góc của M trên AC,BD

\(=32R^4-8R^2.R^2=24R^4\)

8 tháng 8 2021

17 nha

NV
21 tháng 12 2022

a.

Qua S kẻ đường thẳng d song song AB

Do \(\left\{{}\begin{matrix}AB\in\left(SAB\right)\\CD\in\left(SCD\right)\\AB||CD\\S\in\left(SAB\right)\cap\left(SCD\right)\end{matrix}\right.\)

\(\Rightarrow d=\left(SAB\right)\cap\left(SCD\right)\)

b.

Gọi E là trung điểm AD, kéo dài AG cắt SD tại F \(\Rightarrow F\) là trung điểm SD (do G là trọng tâm SAD)

AM thuộc AB nên AM cắt SB tại B \(\Rightarrow B'\) trùng B

Trong mp (SCD), qua F kẻ đường thẳng song song CD cắt SC tại C'

\(\Rightarrow C'\) là trung điểm SC (do F là trung điểm SD)

Trong mp (ABCD), kéo dài AB và CE cắt nhau tại H

3 mp (SCE), (ABCD), (AGM) cắt nhau theo 3 giao tuyến phân biệt AB, CE, C'G, mà AB và CE cắt nhau tại H \(\Rightarrow\) 3 đường thẳng đồng quy tại H (theo t/c giao tuyến 3 mp cắt nhau)

Hay C',G,H thẳng hàng

\(AE||CB\) ; \(AE=\dfrac{1}{2}AD=\dfrac{1}{2}CB\Rightarrow\) AE là đường trung bình tam giác HCB

\(\Rightarrow A\) là trung điểm BH và E là trung điểm CH

\(\Rightarrow G\) là trọng tâm tam giác SCH

\(\Rightarrow\dfrac{HG}{HC'}=\dfrac{2}{3}\) (1)

Theo giả thiết \(MB=2MA\Rightarrow AB-MA=2MA\Rightarrow MA=\dfrac{1}{3}AB=\dfrac{1}{3}AH\)

\(\Rightarrow\dfrac{HM}{BH}=\dfrac{AH+AM}{2AH}=\dfrac{AH+\dfrac{1}{3}AH}{2AH}=\dfrac{2}{3}\) (2)

(1);(2) \(\Rightarrow\dfrac{HG}{HC'}=\dfrac{HM}{BH}\Rightarrow MG||BC'\)

Hay \(MG||B'C'\) (do B trùng B')

NV
21 tháng 12 2022

loading...

30 tháng 10 2023

loading...  loading...  loading...  

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

28 tháng 8 2021

Bài 3 : 

a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Thay x = 6 ta được : \(-\left(6-1\right)^3=-\left(5\right)^3=-125\)

b, \(8-12x+6x^2-x^3=\left(2-x\right)^3\)

Thay x = 12 ta được : \(\left(2-12\right)^3=\left(-10\right)^3=-1000000\)

Bài 4 : 

a, \(A=163^2+74.163+37^2=163^2+2.37.163+37^2\)

\(=\left(163+37\right)^2=\left(200\right)^2=40000\)

28 tháng 8 2021

Trả lời:

Bài 3: 

a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Thay x = 6 vào biểu thức trên, ta có:

\(-\left(6-1\right)^3=-5^3=-125\)

b, \(8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)

Thay x = 12 vào biểu thức trên, ta có:

\(\left(2-12\right)^3=\left(-10\right)^3=-1000\)

Bài 4:

a, Ta có: \(A=\) \(163^2+74.163+37^2=163^2+2.163.37+37^2=\left(163+37\right)^2=200^2\)

            \(B=\)\(147^2-94.147+47^2=147^2-2.147.47+47^2=\left(147-47\right)^2=100^2\)

Vì \(200^2>100^2\)

nên \(A>B\)

b, Ta có: \(C=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(=2^2+4^2+...+100^2-1^2-3^2-...-99^2\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

\(=1.3+1.7+...+1.199\)

\(=3+7+...+199\)

\(=\frac{\left(199+3\right).50}{2}=5050\)  (50 là số số hạng)

\(D=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(=\left(3.7\right)^8-\left[\left(21^4\right)^2-1\right]=21^8-21^8+1=1\)

Vì \(5050>1\)

nên \(C>D\)