Tìm các số tự nhiên a,b sao cho:(2008.a+3.b+1).(2008 mũ a+b)=225
Giúp mình với ,mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai thấy tên tớ giống con trai ko mà ai cũng nói con trai zậy
Hà Chí Dương tên giống con trai mà nhưng vì họ Hà chắc ko phải đâu nhỉ
Đặt \(A=\left(2008a+3b+1\right)\left(2008^a+2008a+b\right)\)
Nếu \(a\ge1\Rightarrow A\ge\left(2008.1+3b+1\right)\left(2008^1+2008.1+b\right)\)
\(\Rightarrow A\ge\left(2009+3b\right)\left(4016+b\right)>225\)
Vậy \(a=0\Rightarrow A=\left(3b+1\right)\left(1+b\right)=225\)
\(3b+1\)chia 3 dư 1 \(\Rightarrow3b+1=25\)
\(\Rightarrow3b=24\Rightarrow b=8\)
Vậy \(\left(a;b\right)\in\left\{\left(0;8\right)\right\}\)
Theo đề bài 2008a + 3b + 1 và 2008a + 2008a + b là 2 số lẻ.
Nếu a 0 2008a + 2008a là số chẵn để 2008a + 2008a + b lẻ b lẻ
Nếu b lẻ 3b + 1 chẵn do đó 2008a + 3b + 1 chẵn (không thoả mãn)
Vậy a = 0
Với a = 0 (3b + 1)(b + 1) = 225
Vì b N (3b + 1)(b + 1) = 3.75 = 5. 45 = 9.25
3b + 1 không chia hết cho 3 và 3b + 1 > b + 1
Vậy a = 0 ; b = 8.
**** NHE
Xét \(\left(2008a+3b+1\right)\left(2008^a+b\right)=225\)có \(225\) là số lẻ nên \(2008^a+3b+1\) và \(2008^a+b\) phải cùng là số lẻ
\(+\)Nếu \(a\ne0\) thì \(2008^a+b\) nhận giá trị là một số chẵn. Như vậy, để giá trị của \(2008^a+b\) lẻ thì \(b\)phải là một số lẻ.
Suy ra \(3b\) nhận giá trị lẻ. Từ đây, ta dễ dàng chứng minh được \(2008^a+3b+1\)nhận giá trị chẵn (vô lí)
\(+\)Nếu \(a=0\) thì \(\left(2008.0+3b+1\right)\left(2008^0+b\right)=225\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225.1=75.3=45.5=25.9=15.15\)
Vì \(a;b\in N\) nên \(3b+1>b+1\)nên \(3b+1=225;75;45;25\)và \(b+1=1;3;5;9\)
Mặt khác, ta có: \(3b+1\)chia cho \(3\) dư \(1\)
Do đó: \(3b+1=25;b+1=9\)
\(\Rightarrow b=8\)
Vậy, \(a=0;b=8\)