Tính A, biết :
A=4/3x9/8x16/15x...x400/399 ( sử dụng phương pháp giải lớp 6 nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta phân tích: 4/3=2/1x2/3;9/8=3/2x3/4;16/15=4/3x4/5;.......;99/98x99/100, Ta có dãy số:2/1x2/3x3/2x3/4x4/3x4/5x........x99/98x99/100. Xóa bớt những tử số và mẫu số giống nhau, ta có kết quả bằng: 2/1x99/100= 2x99/100=99/50
\(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{3481}{3480}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{59^2}{58.60}\)
\(=\frac{2.3.4.....59}{1.2.3.....58}.\frac{2.3.4....59}{3.4.5....60}\)
\(=59.\frac{2}{60}=\frac{59}{30}\)
Ta có : \(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.......\frac{3481}{3480}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}........\frac{59.59}{58.60}\)
\(=\frac{2.3.4........59}{1.2.3.......58}.\frac{2.3.4.......59}{3.4.5........60}\)
\(=59.\frac{1}{30}=\frac{59}{30}\)
A = \(\dfrac{4}{3}\times\dfrac{9}{8}\times\dfrac{16}{15}\times\dfrac{25}{24}\times\dfrac{36}{35}\times\dfrac{49}{48}\times\dfrac{64}{63}\times\dfrac{81}{80}\times\dfrac{100}{99}\times\dfrac{121}{120}\)
A = \(\dfrac{2\times2\times3\times3\times4\times4\times5\times5\times6\times6\times7\times7\times8\times8\times9\times9\times10\times10\times11\times11}{1\times3\times2\times4\times3\times5\times4\times6\times5\times7\times6\times8\times7\times9\times8\times10\times9\times11\times10\times12}\)
A = \(\dfrac{3\times3\times4\times4\times5\times5.....\times10\times10}{3\times3\times4\times4\times5\times5.....\times10\times10}\) \(\times\) \(\dfrac{2\times2\times11\times11}{1\times2\times11\times12}\)
A =1 \(\times\) \(\dfrac{2\times2\times11\times11}{1\times2\times11\times2\times6}\)
A = \(\dfrac{2\times2\times11}{2\times2\times11}\) \(\times\) \(\dfrac{11}{6}\)
A = 1 \(\times\) \(\dfrac{11}{6}\)
A = \(\dfrac{11}{6}\)
\(205+\left(45-x\right)=176\)
\(205+45-x=176\)
\(250-x=176\)
\(x=250-176\)
\(x=74\)
\(a,10.a^6+20a^5=10a^5\left(a+2\right)\)
\(b,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
\(c,3ab^3+6ab^2-18ab=3ab\left(b^2+2b-1\right)\)
\(d,15x^3y^2+10x^2y^2-20x^2y^3=5x^2y^2\left(3x+2-4y\right)\)
\(e,a^2\left(x-1\right)-b\left(1-x\right)=a^2\left(x-1\right)+b\left(x-1\right)=\left(x-1\right)\left(a^2+b\right)\)
\(f,x\left(x-5\right)-4\left(5-x\right)=x\left(x-5\right)+4\left(x-5\right)=\left(x-5\right)\left(x+4\right)\)
(mk sửa lại thứ tự là a,b,c,d,e,f nha)
chúc bn học tốt
\(1,10a^6+20a^5=10a^5\left(a+10\right)\)
\(2,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)^2\)
\(3,3ab^3+6ab^2-18ab\)
\(=3ab\left(b^2+2b-6\right)\)
\(4,15x^3y^2+10x^2y^2-20x^2y^3\)
\(=5x^2y^2\left(3x+2-4y\right)\)
\(5,a^2\left(x-1\right)-b\left(1-x\right)\)
\(=a^2\left(x-1\right)+b\left(x-1\right)\)
\(=\left(x-1\right)\left(a^2+b\right)\)
\(6,x\left(x-5\right)-4\left(5-x\right)\)
\(=x\left(x-5\right)+4\left(x-5\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
A = \(\dfrac{4}{3}\) \(\times\) \(\dfrac{9}{8}\) \(\times\) \(\dfrac{16}{15}\) \(\times\) ....... \(\times\) \(\dfrac{400}{399}\)
Đặt tử số là B; mẫu số là C ta có:
B = 4 \(\times\) 9 \(\times\) 16 \(\times\).....\(\times\) 400
B = 22 \(\times\) 32 \(\times\) 42 \(\times\) ......\(\times\) 202
B = 22 \(\times\)( 3 \(\times\) 4 \(\times\) .......\(\times\) 19)2 \(\times\) 202
C = 3 \(\times\) 8 \(\times\) 15 \(\times\) ......\(\times\) 339
3 = 1 \(\times\) 3
8 = 2 \(\times\) 4
15 = 3 \(\times\) 5
..........................
399 = 19 \(\times\) 21
Nhân vế với vết ta được:
C = 1 \(\times\) 2 \(\times\) 3 \(\times\) 4\(\times\)....\(\times\)19\(\times\)3 \(\times\) 4 \(\times\) 5 \(\times\).....\(\times\)21
C = 1 \(\times\) 2 \(\times\)( 3 \(\times\) 4 \(\times\).....\(\times\) 19)2 \(\times\) 20 \(\times\) 21
A = \(\dfrac{2^2\times\left(3\times4\times...\times19\right)^2\times20^2}{1\times2\times\left(3\times4\times....\times19\right)^2\times20\times21}\)
A = \(\dfrac{2\times\left(3\times4\times...\times19\right)^2\times20}{2\times\left(3\times4\times...\times19\right)^2\times20}\) \(\times\) \(\dfrac{2\times20}{1\times21}\)
A = 1 \(\times\) \(\dfrac{40}{21}\)
A = \(\dfrac{40}{21}\)