K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Không và Có

Ta thử lấy : 4 = a ; 5 = b ; 6 = c

a : 3 = 1 dư 1

b : 3 = 1 dư 2

c : 3 = 2

Còn nếu : a = 3 ; b = 6 ; c = 9

Thì cùng số dư 

Tùy trường hợp thôi

23 tháng 4 2017

bn ơi tùy theo trường hợp thui

14 tháng 7 2018

1) Gọi hai số đó là a và b

Ta có:   a+b=3(a-b) 

        => a+b = 3a -3b 

=> a+b +3b = 3a

=> a+ 4b = 3a => 4b = 2a  => 2b = a => a : b = 2

ĐS : 2

2) Gọi thương của phép chia A chia cho 54 là b

Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38 

=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2

=> a chia cho 18 được thương là 3b + 2 ; dư 2

Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4

Vậy a = 54.4 + 38 = 254 

3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ

Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4 

=> Không tồn tại 3 số như vậy

b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ  

Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số  lẻ là số chẵn  => Không tồn tại  4 số thỏa  mãn tổng là số lẻ 

~ Học tốt ~

19 tháng 11 2016

Gọi a , b là 2 số chia cho m có cùng số dư

=> a = mk + r ( m là số chia, k là thương, r là số dư)

b = mt + r ( m là số chia, t là thương, r là số dư)

Khi đó a - b = (mk + r ) - (mt + r) = mk + r - mt - r

= mk - mt

= m( k - t)

Vì m chia hết cho m nên m(k - t ) chia hết cho m

hay a - b chia hết cho m

Vậy nếu a và b chia cho m có cùng số dư thì a - b chia hết cho m

19 tháng 9 2016

Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .

cau trả lời không cần đúng chỉ cần nhanh nhất

Ha Ha !

19 tháng 9 2016

Sai đề hoặc thiếu bạn nhé

Mình sẽ cho 1 ví dụ phản chứng

3 và 5 có cùng số dư khi chia cho 2 ( m )

Hiệu 5 - 3 = 2  không chia hết cho 5

7 tháng 1 2017

Hk đâu bạn ơi, ta chỉ cần tìm ra 1 trường hợp là hk phải rồi

VD : 11 : 4 = 2, R = 3 

Mà 11 hk phải là số chính phương

CHÚC BẠN HỌC GIỎI NHÉ

7 tháng 1 2017

1 số tự nhiên bất ki khi chia cho 4 chỉ có thể dư 0 hoặc dư 1 

vậy suy ra 1 số tự nhiên bất ki khi chia cho 4 dư 3 thì số đó không phải là số chính phương

26 tháng 9 2016

1. a chia cho 12 dư 8

=>a=12.k+8

=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)

a không  chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.

26 tháng 9 2016

bít lm lâu ồibanhqua