K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: BB' ⊥ d (gt)

CC' ⊥ d (gt)

Suy ra: BB'// CC'

Tứ giác BB'C'C là hình thang

Kẻ MM' ⊥ d ⇒ MM' // BB' // CC'

Lại có M là trung điểm của BC nên M' là trung điểm của B’C’

⇒ MM' là đường trung bình của hình thang BB'C'C

⇒ MM' = (BB' + CC') / 2 (1)

* Xét hai tam giác vuông AA'O và MM'O:

∠ (AA'O) =  ∠ (MM' O) = 90 0

AO=MO (gt)

∠ (AOA') =  ∠ (MOM' ) (2 góc đối đỉnh)

Do đó: ∆ AA'O =  ∆ MM'O (cạnh huyền, cạnh góc nhọn)

⇒AA' = MM' (2)

Từ (1) và (2) suy ra: AA' = (BB' + CC') / 2

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:

a) Áp dụng định lý Talet cho:

Tam giác $CFD$ có $AM\parallel FD$:

$\frac{DF}{AM}=\frac{CD}{CM}(1)$

Tam giác $ABM$ có $ED\parallel AM$:

$\frac{ED}{AM}=\frac{BD}{BM}(2)$

Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$

$\Rightarrow DE+DF=2AM$ 

Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động

b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$

Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:

$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$

Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$

$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$

Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$

$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$

 

 

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Hình vẽ:
undefined

19 tháng 11 2017

Ta có: BB’ ⊥ d (gt)

            CC’ ⊥ d (gt)

Suy ra: BB’ // CC’

Tứ giác BB’CC’ là hình thang

Kẻ MM’ ⊥ d

 ⇒ MM’ // BB’ // CC’

Nên MM’ là đường trung bình của hình thang BB’CC’

⇒MM′=BB′+CC′2(1)⇒MM′=BB′+CC′2(1)

Xét hai tam giác vuông AA’O và MM’O:

ˆOA′A=ˆOM′MOA′A^=OM′M^

AO = MO (gt)

ˆAOA′=ˆMOM′AOA′^=MOM′^ (đối đỉnh)

Do đó: ∆ AA’O = ∆ MM’O (cạnh huyền, góc nhọn)

⇒ AA’ = MM’ (2)

Từ (1) và (2) suy ra: AA′=BB′+CC′2AA′=BB′+CC′/2.

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image