tìm x để 2x+4/1-2x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
1.
\(A=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2(2x+1)+(2x+1)+3}{2x+1}=x^2+1+\frac{3}{2x+1}\)
Với $x$ nguyên, để $A$ nguyên thì $3\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{0; -1; 1; -2\right\}$
2.
\(B=\frac{3x^2-8x+1}{x-3}=\frac{3x(x-3)+x+1}{x-3}=\frac{3x(x-3)+(x-3)+4}{x-3}=3x+1+\frac{4}{x-3}\)
Với $x$ nguyên, để $B$ nguyên thì $4\vdots x-3$
$\Rightarrow x-3\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{2; 4; 5; 1; 7; -1\right\}$
a: ĐKXĐ: x<>-1
Để \(\dfrac{x^3-x^2+2}{x-1}\in Z\) thì \(x^3-x^2+2⋮x-1\)
=>\(x^2\left(x-1\right)+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: ĐKXĐ: x<>2
Để \(\dfrac{x^3-2x^2+4}{x-2}\in Z\) thì \(x^3-2x^2+4⋮x-2\)
=>\(x^2\left(x-2\right)+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
c: ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì \(2x^3+x^2+2x+2⋮2x+1\)
=>\(x^2\left(2x+1\right)+\left(2x+1\right)+1⋮2x+1\)
=>\(1⋮2x+1\)
=>\(2x+1\in\left\{1;-1\right\}\)
=>\(2x\in\left\{0;-2\right\}\)
=>\(x\in\left\{0;-1\right\}\)
a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)
\(\Rightarrow2x+5⋮x+3\)
\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)
\(\Rightarrow2x+5-2x-6⋮x+3\)
\(\Rightarrow-1⋮x+3\)
\(\Rightarrow x+3\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-4;-2\right\}\)
b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)
\(\Rightarrow3x+4⋮x+1\)
\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)
\(\Rightarrow3x+4-3x-3⋮x+1\)
\(\Rightarrow1⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-2;0\right\}\)
c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow4x-1⋮2x+3\)
\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)
\(\Rightarrow4x-1-4x-6⋮2x+3\)
\(\Rightarrow-7⋮2x+3\)
\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)
a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)
để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)
ta có bảng sau:
x+3 | 2 | -2 | 1 | -1 |
x | -1 | -5 | -2 | -4 |
Vậy x \(\in-1,-2,-5,-4\)
MK ko biế đúng ko nữa , sai thì ý kiến
a)
b)
Chúc các bn hok tốt
Tham khảo nhé
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
A = \(\dfrac{2x+4}{1-2x}\)
A \(\in\) Z ⇔ 2\(x\) + 4 ⋮ 1 - 2\(x\)
- (1 -2\(x\)) + 5 ⋮ 1 - 2\(x\)
5 ⋮ 1 - 2\(x\)
1 - 2\(x\) \(\in\){ -5; -1; 1; 5}
\(x\) \(\in\) { 3; 1; 0; -2}