cho đa thức: P(x)= x^3-3x+2
a,chứng tỏ rằng đa thức có nghiệm là 1
b,phân tích đa thức thành nhân tử và tìm các nghiệm còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thay x=1 vào đa thức P(x) có:
P(1)= 1^3-3x1+2=-2+2=0
==> 1 là nghiệm của đa thức P(x)
Vậy 1 là nghiệm của đa thức P(x) (đbđcm)
b) bạn phân tích ra rồi đặt đa thức đó bằng 0 là ok
Ta có : P(1) = 13 - 3.1 + 2 = -2 + 2 = 0
Vậy x = 1 là 1 nghiệm của đa thức P(x)
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
a) \(P(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 - 2x^4 +1 -4x^3\)
\(= (2x^4 - 2x^4) + (5x^3 - 4x^3 - x^3) + (-x^2 + 3x^2) + 1 \)
\(=2x^2 +1\)
b) \(P(1) = 2.1^2 +1 = 2 + 1 = 3\)
\(P(-1) = 2.(-1)^2 + 1 = 2 + 1 = 3\)
c) Vì \(2x^2 \geq 0 \) với mọi x; 1 > 0 nên \(2x^2 + 1 > 0\) hay P(x) > 0 với mọi x
=> Đa thức trên không có nghiệm
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1