K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{45^2}< \frac{1}{44.45}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{44.45}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{44}-\frac{1}{45}\)

                                                                              \(=1-\frac{1}{45}< 1\) (1)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;\frac{1}{4^2}>0;...;\frac{1}{45^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}>0\)(2)

Từ (1);(2) \(\Rightarrow0< M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< 1\)

=> M không phải là số tự nhiên ( đ p c m)

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)

Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\left(2\right)\)

Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrowđpcm\)

21 tháng 7 2021

undefinedk cho

  • mk nha cảm ơn

các bn nhé!!!!

DD
24 tháng 8 2021

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

5 tháng 8 2017

vì 1/2+1/3+1/4+1/5+1/6+.....+1/11=2,0198765(3)>2 => A>2

12 tháng 8 2015

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

18 tháng 3 2017

\(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{16}=2,380728993ma2,380728993\) ko phải số tự nhiên nên S ko phải số tự nhiên

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

7 tháng 3 2021

ko bít

7 tháng 3 2021

CHỊU THÔI KO BÍT :-D