\( M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}. \) Chứng tỏ rằng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{45^2}< \frac{1}{44.45}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{44.45}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{44}-\frac{1}{45}\)

                                                                              \(=1-\frac{1}{45}< 1\) (1)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;\frac{1}{4^2}>0;...;\frac{1}{45^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}>0\)(2)

Từ (1);(2) \(\Rightarrow0< M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< 1\)

=> M không phải là số tự nhiên ( đ p c m)

13 tháng 6 2018

Ta có:

\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)

\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)

\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)

     \(B>\frac{4}{5}+\frac{1}{5}\)

    \(B>1\)\(\left(đpcm\right)\)

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

18 tháng 4 2017

1/22+1/32+1/42+...+1/1002>0  và 1/22+1/32+....+1/1002<1/1.2+1/2.3+....+1/99.100=1/1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<1

nên 0<1/22+1/32+...+1/100<1

vậy 1/22+1/32+...+1/1002 ko phải là số tự nhiên

18 tháng 4 2017

Ta có  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{100^2}>0\)       (1)

VÌ \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

     \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

      \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

         \(.\)         \(.\)

         \(.\)         \(.\)

         \(.\)         \(.\)

      \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

Cộng vế với vế ta có \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..........+\frac{1}{99\cdot100}\)

\(\Rightarrow M< 1-\frac{1}{100}< 1\)(2)

         Kết hợp (1) với (2) ta có :  \(0< M< 1\)

          \(\Rightarrow\)Không tồn tại \(M\)là số tự nhiên thỏa mãn điều kiện trên

    k cho mình nha !

28 tháng 4 2017

< 1 nhé 

28 tháng 4 2017

Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\)\(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\)\(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)

Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)

=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)

=> A < 1

8 tháng 7 2018

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

6 tháng 8 2018

\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)

\(\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)

\(\Rightarrow94< x< 92\)

mà x là số tựu nhiên => \(x\in\varnothing\)