Tìm x biết
\(\dfrac{3}{x}+\dfrac{x}{x+1}+\dfrac{x-3}{x}=\dfrac{13}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
a) \(x:\dfrac{6}{13}=\dfrac{13}{7}\\ \Rightarrow x=\dfrac{13}{7}.\dfrac{6}{13}\\ \Rightarrow x=\dfrac{6}{7}\)
b) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{7}.x=\dfrac{13}{15}\\ \Rightarrow x=\dfrac{91}{60}\)
c) \(\left(\dfrac{3}{10}-x\right):\dfrac{2}{5}=\dfrac{3}{5}\\ \Rightarrow\dfrac{3}{10}-x=\dfrac{6}{25}\\ \Rightarrow x=\dfrac{3}{50}\)
d) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\\ \Rightarrow\dfrac{2}{3}x=\dfrac{11}{3}\\ \Rightarrow x=\dfrac{11}{2}\)
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
\(\left(\dfrac{103}{8}-\dfrac{193}{18}\right):x-\dfrac{40}{33}:\dfrac{8}{11}=\dfrac{5}{3}\)
\(\dfrac{155}{72}:x-\dfrac{5}{3}=\dfrac{5}{3}\)
\(\dfrac{155}{72}:x=\dfrac{5}{3}+\dfrac{5}{3}=\dfrac{10}{3}\)
\(x=\dfrac{155}{72}:\dfrac{10}{3}=\dfrac{31}{48}\)
vaayj.....
a, \(x\) : \(\dfrac{13}{3}\) = -2,5
\(x\) = -2,5 . \(\dfrac{13}{3}\)
\(x\) = \(\dfrac{65}{6}\)
b,\(\dfrac{3}{5}\)\(x\) = \(\dfrac{1}{10}-\)\(\dfrac{1}{4}\)
\(\dfrac{3}{5}x\) = \(\dfrac{-3}{20}\)
\(x\) = \(\dfrac{-3}{20}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{-1}{4}\)
c, \(\dfrac{25}{9}-\dfrac{12}{13}x=\dfrac{7}{9}\)
\(\dfrac{12}{13}x\)\(=\dfrac{25}{9}-\dfrac{7}{9}\)
\(\dfrac{12}{13}x=2\)
\(x=2:\dfrac{12}{13}\)
\(x=\dfrac{13}{6}\)
x=\(\dfrac{4}{15}\) : \(\dfrac{-2}{3}\)
x=\(\dfrac{-2}{5}\)
a: Ta có: \(x\cdot\dfrac{-2}{3}=\dfrac{4}{15}\)
\(\Leftrightarrow x=\dfrac{4}{15}:\dfrac{-2}{3}=\dfrac{4}{15}\cdot\dfrac{-3}{2}=\dfrac{-2}{5}\)
b: Ta có: \(x\cdot\dfrac{-7}{19}=\dfrac{-13}{24}\)
\(\Leftrightarrow x=\dfrac{13}{24}:\dfrac{7}{19}=\dfrac{247}{168}\)
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
\(đk:x\ne0;x\ne-1\\ \dfrac{3}{x}+\dfrac{x}{x+1}+\dfrac{x-3}{x}=\dfrac{13}{7}\\ \Leftrightarrow\dfrac{7.3.\left(x+1\right)}{7x\left(x+1\right)}+\dfrac{x.x.7}{7x\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right).7}{7x\left(x+1\right)}=\dfrac{13.x.\left(x+1\right)}{7x\left(x+1\right)}\\ \Leftrightarrow\dfrac{21x+21+7x^2+7x^2+7x-21x-21}{7x\left(x+1\right)}=\dfrac{13x^2+13x}{7x\left(x+1\right)}\\ \Leftrightarrow14x^2+7x=13x^2+13x\\ \Leftrightarrow14x^2-13x^2=13x-7x\\ \Leftrightarrow x^2=6x\\ \Leftrightarrow x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(kot/m\right)\\x=6\left(t/m\right)\end{matrix}\right.\Rightarrow x=6\)