1) cho a,b>0. Chứng minh a+b lớn hơn hoặc bằng 2\(\sqrt{ab}\).
2)A,b>0 thỏa mãn 1/a +1/b =2. tìm giá trị lớn nhâts của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{25}{2}\)
tại a=b=1/2
thêm ít cách
Cách 1:
Áp dụng BĐT bunhiacopxki ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)
\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)
Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )
ÁP dụng BĐT AM-GM ta có:
\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)
Thay (2) vào (1) ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)
\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 2:
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)
\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)
\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)
ÁP dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)
\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)
\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1)
ÁP dụng BĐT AM-GM ta có:
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)
Thay (2) vào (1) ta được:
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)
Cộng (3)+(4)+(5)+(6) ta được:
\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 3:Làm tắt thui ạ
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)
\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)
\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)
giống cách 2 rồi làm nốt
\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)
BĐT cần chứng minh tương đương:
\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)
Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)
BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)
\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\) luôn đúng theo (1)
Vậy BĐT đã cho được c/m
Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)
a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3
⇔ x ≤ 3/4
Vậy: x ≤ 3/4
b) a, b > 0
Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)
Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)
Cộng (1) và (2) vế theo vế, ta được:
2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2
Hehe
1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b
=> a^2- 2ab+ b^2>= 0 với mọi a,b
=> a^2+2ab+ b^2>= 4ab với a,b>0
=> (a+b)^2> 4ab với a,b>0
=> a+b>= \(2\sqrt{ab}\)
Dấu = xảy ra <=> a-b=0 <=> a= b
Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D
2) Chắc thiếu đề :D