K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\widehat{A}=180^0-48^0-25^0=107^0\)

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{AB}{sin25}=\dfrac{AC}{sin48}=\dfrac{20}{sin107}\)

=>\(AB\simeq8,84\left(cm\right);AC\simeq15,54\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot8.84\cdot15.54\cdot sin107\simeq65.69\left(cm^2\right)\)

=>\(\dfrac{1}{2}\cdot AH\cdot20=65.69\)

=>AH=6,569(cm)

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

11 tháng 7 2021


 

 

28 tháng 8 2021

Bạn xem lại ý a ( đề bài ) nhé. Mk nghĩ nó ntn 

undefined

28 tháng 8 2021

 C ơn

 

27 tháng 7 2019

A B C H M N I

HM _|_ AB (gt) 

AB _|_ AC do tam giác ABC vuông tại  A (gt)

AN; HM phân biệt 

=> AN // HM (tc)

=> góc NAH = góc AHM (slt)

xét tam giác NAH và tam giác MHA có : AH chung

góc ANH = góc AMH = 90 

=> tam giác NAH = tam giác MHA (ch-gn)

=> HM = AN (đn)

b,  NA = HM (câu a)

xét tam giác NAM và tam giác HMA có : AM chung

góc NAM = góc HMA = 90 

=> tam giác NAM = tam giác HMA (2cgv)

=> AH = MN (đn)

c, AN // HM (câu a)

=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)

xét tam giác NAI và tam giác MHI có : AN = MH (câu a)

=> tam giác NAI = tam giác MHI (g-c-g)

=> NI = IM (đn)

d,  A B C H M N I

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)

12 tháng 2 2022
30 tháng 7 2016

Xin lỗi sửa lại đề giùm là KA = AH

27 tháng 7 2023

Ai hộ mình với ạ ._.

27 tháng 7 2023

Xét Δ vuông ABH ta có :

\(tanB=\dfrac{BH}{AH}\Rightarrow BH=AH.tanB\)

Xét Δ vuông ACH ta có :

\(tanC=\dfrac{CH}{AH}\Rightarrow CH=AH.tanC\)

Ta lại có :

\(BC=BH+CH\)

\(\Leftrightarrow2AH=AH.tanB+AH.tanC\left(AH=\dfrac{1}{2}BC\right)\)

\(\Leftrightarrow2AH=AH.\left(tanB+tanC\right)\)

\(\Leftrightarrow tanB+tanC=2\)

\(\Leftrightarrow tanC=2-tanB=2-tan75^o=2-3,73=-1,73\)

\(\Leftrightarrow C=-60^o\) (theo góc lượng giác)

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)