Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC đg cao AH góc B =48 góc C=25 BC = 20 tính AH Lưu ý là kh phải tam giác vuông nhé mn
\(\widehat{A}=180^0-48^0-25^0=107^0\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
=>\(\dfrac{AB}{sin25}=\dfrac{AC}{sin48}=\dfrac{20}{sin107}\)
=>\(AB\simeq8,84\left(cm\right);AC\simeq15,54\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot8.84\cdot15.54\cdot sin107\simeq65.69\left(cm^2\right)\)
=>\(\dfrac{1}{2}\cdot AH\cdot20=65.69\)
=>AH=6,569(cm)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
a: sin ACB=AH/AC
=>AH/AC=1/2
=>AH=4cm
b: sin ABC=2/3
=>AH/AB=2/3
=>AB=6cm
HB=căn 6^2-4^2=2căn 5cm
HC=căn 8^2-4^2=4căn 3cm
BC=HB+HC=2căn5+4căn3(cm)
S ABC=1/2*BA*BC*sinB
=1/2*1/2*6*(2căn5+4căn3)
=3(căn 5+2căn 3)
Ai hộ mình với ạ ._.
Xét Δ vuông ABH ta có :
\(tanB=\dfrac{BH}{AH}\Rightarrow BH=AH.tanB\)
Xét Δ vuông ACH ta có :
\(tanC=\dfrac{CH}{AH}\Rightarrow CH=AH.tanC\)
Ta lại có :
\(BC=BH+CH\)
\(\Leftrightarrow2AH=AH.tanB+AH.tanC\left(AH=\dfrac{1}{2}BC\right)\)
\(\Leftrightarrow2AH=AH.\left(tanB+tanC\right)\)
\(\Leftrightarrow tanB+tanC=2\)
\(\Leftrightarrow tanC=2-tanB=2-tan75^o=2-3,73=-1,73\)
\(\Leftrightarrow C=-60^o\) (theo góc lượng giác)