K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

a.

Do tam giác SAB đều \(\Rightarrow SB=AB=a\)

Trong tam giác SBC ta có: 

\(SB^2+BC^2=2a^2=SC^2\)

\(\Rightarrow\Delta SBC\) vuông tại B (pitago đảo)

\(\Rightarrow BC\perp SB\)

Mà \(BC\perp AB\left(gt\right)\)

\(\Rightarrow BC\perp\left(SAB\right)\)

Do \(SH\in\left(SAB\right)\Rightarrow BC\perp SH\) (1)

Lại có SAB là tam giác đều, mà SH là đường trung tuyến (H là trung điểm AB)

\(\Rightarrow SH\) đồng thời là đường cao hay \(SH\perp AB\) (2)

(1);(2) \(\Rightarrow SH\perp\left(ABCD\right)\)

b.

\(SH\perp\left(ABCD\right)\Rightarrow\) HM là hình chiếu vuông góc của SM lên (ABCD)

\(\Rightarrow\widehat{SMH}\) là góc giữa SM và (ABCD) hay \(\alpha=\widehat{SMH}\)

\(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(HM=BC=a\) \(\Rightarrow tan\alpha=\dfrac{SH}{HM}=\dfrac{\sqrt{3}}{2}\)

c.

Do H là trung điểm AB, K là trung điểm AD \(\Rightarrow\) HK là đường trung bình tam giác ABD

\(\Rightarrow HK||BD\)

Mà \(BD\perp AC\) (hai đường chéo hình vuông)

\(\Rightarrow HK\perp AC\) (3)

Lại có \(SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\) (4)

(3);(4) \(\Rightarrow AC\perp\left(SHK\right)\Rightarrow AC\perp SK\)

NV
2 tháng 4 2023

loading...

5 tháng 9 2017

Đáp án A

Hướng dẫn giải: Ta có:

 

Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H  vuông tại A

Do đó mà S A ⊥ ( A B C D )  nên

 

  (Mặt phẳng (SAB) vuông góc với đáy (ABCD)) 

Trong tam giác vuông SAC, có

5 tháng 5 2017

Đáp án A

28 tháng 9 2019

 

 

 

 

 

Ta có

A H = 1 2 A B = a 2 ; S A = A B = a S H = H C = B H 2 + B C 2 = a 5 2  

Do A H 2 + S A 2 = 5 a 2 4 = S H 2  nên S A ⊥ A B

Do đó S A ⊥ A B C D  nên S C , A B C D ^ = S C A ^  

Trong tam giác vuông SAC có tan α = tan S C A ^ = S A A C = 1 2

Đáp án A

NV
13 tháng 4 2021

\(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(ABCD\right)=AB\\SA\perp AB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(\widehat{SBA}=45^0\) (do SAB vuông cân tại A)

b.

\(\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=AB\sqrt{2}=2a\sqrt{2}\)

\(tan\widehat{SCA}=\dfrac{SA}{SC}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SCA}\approx35^015'\)

26 tháng 5 2021

Gợi ý xem bạn làm được ko, ko thì để mình trình bày luôn

Kẻ \(KC\perp HD;KC\cap HD=\left\{K\right\}\)

\(\left\{{}\begin{matrix}KC\perp HD\\KC\perp SH\end{matrix}\right.\Rightarrow KC\perp\left(SHD\right)\Rightarrow\left(SKC\right)\perp\left(SHD\right)\)

Kẻ \(CI\perp SK;CI\cap SK=\left\{I\right\}\Rightarrow CI\perp\left(SHD\right)\Rightarrow CI\perp\left(SHD\right)\)

\(\Rightarrow\left(SC,\left(SHD\right)\right)=\left(SC,SI\right)\)

 

31 tháng 3 2018

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên

Chọn hệ trục tọa độ Oxyz như hình vẽ. Chọn a = 2.

Khi đó: 

Ta có mặt phẳng (ABCD) có vecto pháp tuyến là 

Mặt phẳng (GMN) có vecto pháp tuyến là 

 

Gọi α là góc giữa hai mặt phẳng (GMN) và (ABCD)

Ta có: 

11 tháng 8 2019

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên  S O ⊥ A B C D