CMR với mọi x ta luôn có: (2x+1)\(\sqrt{x^2-x+1}\) > (2x-1)\(\sqrt{x^2+x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x+1\ge0\\x^2+1\ne0\end{matrix}\right.\)
Ta có:
+) \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
+) \(x^2+1\ge1>0\forall x\)
Vậy biểu thức luôn xác định với mọi x
2) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-2x+3>0\\x^2-x+1\ge0\end{matrix}\right.\)
Ta có:
+) \(x^2-2x+3=\left(x^2-2x+1\right)+2\)
\(=\left(x-1\right)^2+2\ge2>0\forall x\)
+) \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy biểu thức luôn xác định với mọi x
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
Ta có \(x^2-2x+5=\left(x-1\right)^2+4\ge4\to\sqrt{x^2-2x+5}\ge2.\)
\(x^2-2x+2=\left(x-1\right)^2+1\ge1\to\sqrt{x^2-2x+2}\ge1.\)
Vậy vế trái \(\ge2+1=3.\)
Lời giải:
\((2x+1)\sqrt{x^2-x+1}>(2x-1)\sqrt{x^2+x+1}\)
\(\Leftrightarrow (2x+1)\sqrt{4x^2-4x+4}> (2x-1)\sqrt{4x^2+4x+4}\)
\(\Leftrightarrow (2x+1)\sqrt{(2x-1)^2+3}>(2x-1)\sqrt{(2x+1)^2+3}\) (1)
Xét các TH sau:
TH1: \(\left\{\begin{matrix} 2x-1>0\\ 2x+1>0\end{matrix}\right.\Rightarrow x>0\)
Bình phương hai vế:
\((1)\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)
\(\Leftrightarrow 3(2x+1)^2\geq 3(2x-1)^2\)
\(\Leftrightarrow (2x+1)^2\geq (2x-1)^2\)
\(\Leftrightarrow 8x\geq 0\) (đúng)
TH2: \(\left\{\begin{matrix} 2x-1<0\\ 2x+1<0\end{matrix}\right.\Rightarrow x<0\)
\((1)\Leftrightarrow -(2x+1)\sqrt{((x+1)^2+3}< -(2x-1)\sqrt{(2x+1)^2+3}\)
(nhân hai vế với 1 số âm thì phải đổi dấu)
Bây giờ 2 vế đều dương rồi. Bình phương hai vế:
\(\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)
\(\Leftrightarrow 3(2x+1)^2< 3(2x-1)^2\)
\(\Leftrightarrow x< 0\) (đúng)
TH3: \(\left\{\begin{matrix} 2x+1>0\\ 2x-1<0\end{matrix}\right.\)
Khi đó, vế trái lớn hơn 0, vế phải nhỏ hơn 0 nên ta có đpcm.
TH4: \(\left\{\begin{matrix} 2x+1<0\\ 2x-1>0\end{matrix}\right.\) (TH này không thể xảy ra vì \(2x+1> 2x-1\)
TH5: \(x=-\frac{1}{2}\Rightarrow \text{VT}=0; \text{VP}< 0\Rightarrow \text{VT}> \text{VP}\)
TH6: \(x=\frac{1}{2}\Rightarrow \text{VT}>0; \text{VP}=0\Rightarrow \text{VT}>\text{VP}\)
Ta có đpcm.
Đặt 2x - 1 = a
=> x = \(\dfrac{a+1}{2}\)
=> x2 - x + 1 = \(\dfrac{a^2+3}{4}\)
=> x2 + x + 1 = \(\dfrac{a^2+4a+7}{4}\)
(2x + 1)\(\sqrt{x^2-x+1}\) > (2x - 1)\(\sqrt{x^2+x+1}\) (1)
(a + 2)\(\sqrt{\dfrac{a^2+3}{4}}\) > a\(\sqrt{\dfrac{a^2+4a+7}{4}}\)
=> (a + 2)2 \(\dfrac{a^2+3}{4}\) > a2 \(\dfrac{a^2+4a+7}{4}\)
=> a2(a + 2)2 + 3(a + 2)2 > a2(a + 2)2 + 3a2
=> 3a2 + 12(a + 1) > 3a2 (đúng) (2)
(2) đúng => (1) đc CM
Vì trong sách nó nói thế nha
Đúng 100%
Đúng 100%
Đúng 100%
@AD dragon Boy
SGK chưa phải lúc nào cũng đúng
bằng chứng vẫn có phần đinh chính kèm theo
mà 100% bạn chưa đọc cái đinh chính đó
=> 100% câu trả lời của bạn có thể chưa đúng
@thien minh
hd
đặt hai căn là a, b