K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

=\(abc^2\)x b.(a+c)

7 tháng 3 2020

Ta có :

\(\left(a+b+c\right)\left(a+b+c\right)-2\left(ab+bc+ca\right)\)

\(=a^2+ab+ac+ba+b^2+bc+ca+cb+c^2-2ab-2bc-2ca\)

\(=\left(a^2+b^2+c^2\right)+\left(ab+ac+ba+bc+ca+cb-2ab-2bc-2ca\right)\)

\(=a^2+b^2+c^2\)

\(\left(a+b+c\right).\left(a+b+c\right)-2.\left(a.b+b.c+c.a\right)\)

\(=a^2+b^2+c^2-\left(2ab+2bc+2ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

\(=a^2-2ab+b^2-2bc+c^2-2ca\)

\(=\left(a-2b\right)a+\left(b-2c\right)b+\left(c-2a\right)c\)

Chúc bn học tốt

28 tháng 2 2021

(a+b+c).(a+b+c)-2(a.b+b.c+c.a)=a^2+ab+ca+ab+b^2+bc+ca+bc+c^2-2ab-2bc-2ca=(a^2+b^2+c^2)+(ab+ab-2ab)+(ca+ca-2ca)+(bc+bc-2bc)=a^2+b^2+c^2 .

Mik viết thế này mong bạn thông cảm .

28 tháng 2 2021

Ta có: \(\left(a+b+c\right).\left(a+b+c\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2\)

14 tháng 2 2016

bai toan nay kho

30 tháng 10 2015

Nhân mẫu số vào ta được :

ac + ad + bd + bc +ab - ac -bd + dc = ab + bc + cd +da

=> biểu thức trên có giá trị rút gọn là abcd

31 tháng 12 2023

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)