K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có lộn đề không ạ

a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)

Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)

Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)

b: Để M=6 thì \(3-\left(x-1\right)^2=6\)

\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)

c: \(M=-\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

7 tháng 3 2022

a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)

 Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)

 Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)

b, Để M=6 thì:

\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)

c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow M=3-\left(x-1\right)^2\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(M_{max}=3\Leftrightarrow x=1\)

4 tháng 11 2023

Bài 1: A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x a

Thay a = 10 vào A ta có:

A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 -  13 x 10

A = \(\dfrac{13}{13}\) x 100 - 130

A = 100 - 130 

A = - 30

Thay a = 987 vào biểu thức A ta có:

A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 -  13 x 987

A = \(\dfrac{13}{13}\) x 100 - 12831

A =  100 - 12831

A = -12731

 

Câu 13:(1,5 điểm) 1 Cho biểu thức :  A =    với  a) Rút gọn biểu thức A         b) Tìm giá trị của x để A = 42 Tính giá trị của biểu thức  Câu 14:( (1,5 điểm)  Cho hàm số y = 2x¬ – 4    a) Vẽ đồ thị của hàm số đã cho b) Tìm a,b của đường thẳng  (d) y=ax+b biết  đường thẳng (d) cắt đường thẳng   y = x -3 tại một điểm trên trục tung và cắt đường cắt đường thẳng  y = 2x+1 tại điểm trên trục  hoành ...
Đọc tiếp
Câu 13:(1,5 điểm) 1 Cho biểu thức :  A =    với  a) Rút gọn biểu thức A         b) Tìm giá trị của x để A = 42 Tính giá trị của biểu thức  Câu 14:( (1,5 điểm)  Cho hàm số y = 2x¬ – 4    a) Vẽ đồ thị của hàm số đã cho b) Tìm a,b của đường thẳng  (d) y=ax+b biết  đường thẳng (d) cắt đường thẳng   y = x -3 tại một điểm trên trục tung và cắt đường cắt đường thẳng  y = 2x+1 tại điểm trên trục  hoành  độ  c) Giải hệ phương trình                                Câu 15: (3,5 điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.1) Chứng minh AH    BC .2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)3) Chứng minh MN. OE = 2ME. MO                                   4) Giả sử AH = BC. Tính tan  BAC 
0
4 tháng 5 2022

biểu thức đại số mà có hạng tử à :v

a: |2x-3|=1

=>2x-3=1 hoặc 2x-3=-1

=>x=1(nhận) hoặc x=2(loại)

KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)

b: ĐKXĐ: x<>-1; x<>2

\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 a) Tìm x để C = 7b) Tìm x để C...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ