Tìm x biết
a 1/1.2 + 1/2.3 +...+ 1/x.(x+1) = 44/45
b Chứng tỏ rằng: 1/2^2 + 1/3^2 + ... + 1/45^2 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(A=\left(\frac{1}{3}-\frac{1}{203}\right):2=\frac{100}{609}\)
Các ý còn lại cx tách như vật nha
CT chung này \(\frac{x}{n\left(n+x\right)}=\frac{1}{n}-\frac{1}{n+x}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(2A=\frac{1}{3}-\frac{1}{203}=\frac{200}{609}\)
\(A=\frac{100}{609}\)
Tương tự với b thôi.
a) 1/1.2 + 1/2.3 + 1/3.4 + ....... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
= 1 - 1/100
= 99/100 < 1 nên 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 < 1 (ĐPCM)
a)1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100
1-1/100=99/100<1
cho mk nha ^^
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Phần chứng tỏ quy đồng lên rồi tính là ra
Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra
Kết quả là 49/50
Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)
Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)
=> A = 98B
Mình gõ câu a bị lỗi nha , thực chất câu a là
a) Tìm các số tự nhiên x, y biết : 2xy + x + 2y = 13
a)Bạn làm nha vì bài này dễ rồi
b)+)Ta có:A=1.2+2.3+3.4+..................+99.100
=>3A=1.2.3+2.3.3+3.4.3+.................+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)
=>3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101
=>3A=99.100.101
=>A=\(\frac{99.100.101}{3}=333300\)
+)Ta lại có:B=12+22+32+..................+992
=>B=1.1+2.2+3.3+............+99.99
=>B=1.(2-1)+2.(3-1)+3.(4-1)+..........+99.(100-1)
=>B=1.2-1+2.3-2+3.4-3+........................+99.100-99
=>B=(1.2+2.3+3.4+............+99.100)-(1+2+3+..............+99)
Đặt N=1.2+2.3+3.4+....................+99.100
=>3N=1.2.3+2.3.3+3.4.3+.................+99.100.3
=>3N=1.2.3+2.3.(4-1)+3.4.(5-2)+................+99.100.(101-98)
=>3N=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...................-98.99.100+99.100.101
=>3N=99.100.101
=>N=\(\frac{99.100.101}{3}=333300\)
Đặt M=1+2+3+..............+99(có 99 số hạng)
=>M=\(\frac{\left(1+99\right).99}{2}=4950\)
+)Ta thấy A-B=333300-(333300-4950)
=>A-B=333300-333300+4950
=>A-B=4950\(⋮\)50
Vậy A-B\(⋮\)50
Chúc bn học tốt
1.Tính
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=\frac{1}{1}-\frac{1}{50}\)
\(E=\frac{49}{50}\)
Câu 2 mình không biết, xin lỗi nha
a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{44}{45}\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{44}{45}\)
=> \(1-\frac{1}{x+1}=\frac{44}{45}\)
=> \(\frac{x}{x+1}=\frac{44}{45}\)
=> x = 44
b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
.................
\(\frac{1}{45^2}< \frac{1}{44.45}=\frac{1}{44}-\frac{1}{45}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1\)
a) 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/(x+1)=1-1/(x+1)=x/(x+1)=44/45
=> x=44
b/ 1/22 < 1/1.2; 1/32 < 1/2.3; ....; 1/452 < 1/44.45
=> A < 1/1.2+1/2.3+...+1/44.45=1-1/45=44/45 < 1
=> A < 1