cho x y z là các số thực không âm thỏa mãn x+y+z=1
tìm min max P= √7x+9 + √7y+9 + √7z+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)
\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)
\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
\(P=\left(\dfrac{x}{2}+\dfrac{9}{2x}\right)+\left(\dfrac{y}{8}+\dfrac{2}{y}\right)+\left(\dfrac{z}{4}+\dfrac{9}{z}\right)+\dfrac{1}{8}\left(4x+7z+6z\right)\)
\(P\ge2\sqrt{\dfrac{9x}{4x}}+2\sqrt{\dfrac{2y}{8y}}+2\sqrt{\dfrac{9z}{4z}}+\dfrac{1}{8}.76=\dfrac{33}{2}\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(3;4;6\right)\)
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Chị tham khảo bài giải dưới đây nhé:
x^3/(3y+1) +(3y+1)/16+1/4 \(\ge\)3 . căn bậc 3\(\sqrt[]{\frac{x^3.\left(3y+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3x/4(BĐT cauchy) (1)
y^3/(3z+1)+(3z+1)/16+1/4 \(\ge\)3. căn bậc 3\(\sqrt[]{\frac{z^3.\left(3z+1\right).1}{\left(3z+1\right).16.4}}\)\(\ge\)3y/4 (BĐT cauchy) (2)
z^3/(3x+1) +(3x+1)/16 +1/4 \(\ge\) 3. \(\sqrt[3]{\frac{z^3.\left(3x+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3z/4(BĐT cauchy) (3)
cộng theo vế của các bất đảng thức (1),(2),(3) ta có BĐT tương đương
P+3(x+y+z)/16+3/16 \(\ge\)3(x+y+z)/4
\(\Leftrightarrow\)P+3/16\(\ge\)3(x+y+z)/4 -3(x+y+z)/16=9(x+y+z)/16\(\ge\)9/16
\(\Rightarrow\)P+3/16\(\ge\)9/16
\(\Leftrightarrow\)P\(\ge\)3/16
vậy min P=3/16 . Dấu "=" xảy ra khi và chỉ khi x=y=z=1
Chị Linh Mai ơi em không học lớp 9 nhưng bài này có thể em biết làm . Và bài giải trên chỉ mang tính tham khảo thôi nha chị , chưa chắc đúng đâu . Chị cần tham khỏa các bài khác coi đúng không nhé! Em chúc chị mai thi tuyển sinh làm bài tốt nha!
Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)
Với mọi số thực x ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)
\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)
\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)
+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)
\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)
\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)
+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)
\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)
\(=x+y+z+9=10\)
\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)