cho 10 đường thẳng song song cắt 9 đường thẳng song song khác hỏi có bao nhiêu hình bình hành dc tạo thành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ hai đường thẳng song song trong nhóm A và hai đường thẳng song song trong nhóm B tạo thành một hình bình hành.
Chọn 2 đường trong 10 đường của nhóm A có cách.
Chọn 2 đường trong 8 đường của nhóm B có cách.
Vậy số hình bình hành tạo thành là hình.
Chọn D.
Ta thấy rằng, cứ 2 đường thẳng song song cắt 2 đường thẳng song song khác thì tạo thành một hình bình hành
Do đó, hình bình hành tạo thành được xác định qua 2 công đoạn
Công đoạn 1: Chọn 2 đường thẳng trong 4 đường nằm ngang, có:
\(C_4^2 = \frac{{4!}}{{2!.2!}} = 6\)
Công đoạn 2: Chọn 2 đường thẳng trong 5 đường xiên, có: \(C_4^2 = \frac{{5!}}{{2!.3!}} = 10\)
Vậy số hình bình hành được tạo thành là: \(6.10 = 60\) (hình bình hành)
Đáp án C
Gọi là 4 đường thẳng song song với BC.
Gọi là 5 đường thẳng song song với AC.
Gọi là 6 đường thẳng song song với AB.
Cứ 2 đường thẳng song song và hai đường thẳng không song song tạo thành một hình thang.
Vậy số hình thành là
Cách 1:
Nhận xét: cứ 2 đường thẳng họ này kết hợp với 2 đường thẳng họ kia sẽ tạo thành 1 hình bình hành.
Số cách chọn 2 đthẳng mỗi họ:
3x2:2=3cách
5x4:2=10cách
-->Số hình bình hành tạo thành: 3x10=30 hình bình hành
Cách 2:
Trước hết, ta chứng minh giao điểm của 2 đthẳng là đỉnh của 3x5=15 hình bình hành.
Qua mỗi giao điểm có 2 đthẳng là 2 cạnh của hình bình hành, như vậy ta kết hợp 1 cặp đthẳng song song với chúng là ta được 1 hình bình hành.
Số cặp đthẳng song song với chúng:
(3-1)x(5-1)=8cặp
Số giao điểm: 3x5=15
Số hình bình hành có thể tạo thành là:
15x8=120 hình bình hành
Nhưng hình bình hành có 4 đỉnh nên số hình bình hành thực tế được tạo thành chỉ có:
120:4=30 hình bình hành
Số hình bình hành tạo thành là: \(C^2_{10}\cdot C^2_9=1620\left(đường\right)\)