K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

8 tháng 8 2016

ai làm đầu tiên sẽ đc k

a ) Xét  ∆BAD và  ∆CAD
AB = AC (  ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=>  ∆ABH =  ∆ACH(g.c.g)

18 tháng 9 2018

Hình vẽ bn tự vẽ

Vì tam giác ABC đều nên góc BAC=60 độ

Mà góc EAD=góc BAC

Suy ra: góc EAD=60 độ

Ta lại có: AE=AD(gt)

Suy ra: tam AED đều có DM là đg trung tuyến

Suy ra DM cũng là đường cao

Xét tam giác vuông DMC có:

\(MP=\frac{1}{2}CD\)(1)

Tương tự: CN vuông góc AB

Xét tam giác vuông CND có: 

\(NP=\frac{1}{2}CD\)(2)

Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh

Suy ra: CD=BE

Mà tam giác AEB có: MN là đường trung bình

Suy ra: \(MN=\frac{1}{2}BE\)

Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)

Từ (1);(2) và (3)

Vậy tam giác MNP đều

Chúc bn học tốt.

Mik đi hc đến 8h30 tối mới về nên làm hơi trễ

26 tháng 3 2020

A B N C H M I

a)Ta có : AH là đường cao của tam của tam giác ABC ( gt )

\(\Rightarrow\) AH vuông góc với BC mà AB = AC (  tam giác ABC cân tại A ) 

\(\Rightarrow\) HB = HC ( quan hệ đường xiên và hình chiếu ) 

\(\Rightarrow\) HC =\(\frac{1}{2}\) BC mà BC = CN ( gt )

\(\Rightarrow\) HC =\(\frac{1}{2}\) CN 

\(\Rightarrow\) HC = \(\frac{1}{3}\)NH

\(\Rightarrow\) NC =\(\frac{2}{3}\) NH ( 1 ) 

Mà HA = HM ( gt ) 

\(\Rightarrow\) H là trung điểm của AM

\(\Rightarrow\) CH là đường trung tuyến ứng với cạnh AM của tam giác AMN ( 2 )

Từ ( 1 ) ; ( 2 )

\(\Rightarrow\) C là trọng tâm của của tam giác AMN

b)Ta có : C là trọng tâm của tam giác AMN 

\(\Rightarrow\) AC là đường trung tuyến ứng với cạnh MN 

\(\Rightarrow\) I là trung điểm của MN 

Mà H là trung điểm của AM 

\(\Rightarrow\) HI là đường trung bình của tam giác AMN 

\(\Rightarrow\) HI song song với AN