Cho tam giác ABC có BC=2AB.gọi M là trung điểm của BC ,N là trung điểm của BM.Trên tia đối của NA lấy điểm E /AN=EN
A. Tam giác NAB=Tam giác NEM
B.ABM là tam giác cần
C.M là trọng tâm của tgiác AEC
D.AB> 2/3AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
a)Ta có : AH là đường cao của tam của tam giác ABC ( gt )
\(\Rightarrow\) AH vuông góc với BC mà AB = AC ( tam giác ABC cân tại A )
\(\Rightarrow\) HB = HC ( quan hệ đường xiên và hình chiếu )
\(\Rightarrow\) HC =\(\frac{1}{2}\) BC mà BC = CN ( gt )
\(\Rightarrow\) HC =\(\frac{1}{2}\) CN
\(\Rightarrow\) HC = \(\frac{1}{3}\)NH
\(\Rightarrow\) NC =\(\frac{2}{3}\) NH ( 1 )
Mà HA = HM ( gt )
\(\Rightarrow\) H là trung điểm của AM
\(\Rightarrow\) CH là đường trung tuyến ứng với cạnh AM của tam giác AMN ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\) C là trọng tâm của của tam giác AMN
b)Ta có : C là trọng tâm của tam giác AMN
\(\Rightarrow\) AC là đường trung tuyến ứng với cạnh MN
\(\Rightarrow\) I là trung điểm của MN
Mà H là trung điểm của AM
\(\Rightarrow\) HI là đường trung bình của tam giác AMN
\(\Rightarrow\) HI song song với AN