Tìm giá trị của n thuộc N để A=2n2 +1 phần n2-1 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Ta có: A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3
Để A có giá trị nguyên <=> n+3∈Ư(7)={±1;±7}n+3∈Ư(7)={±1;±7}
n + 3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
Vậy để A có giá trị nguyên thì n = {-2;-4;4;-10}
Để M nguyên thì \(2n-1⋮n+3\)
\(\Leftrightarrow2n+6-7⋮n+3\)
mà \(2n+6⋮n+3\)
nên \(-7⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-7\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;-7;7\right\}\)
hay \(n\in\left\{-2;-4;-10;4\right\}\)
Vậy: \(n\in\left\{-2;-4;-10;4\right\}\)
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
Ta có \(A=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)
Để \(A\in Z\)thì \(2+\frac{3}{n^2+1}\)là số nguyên
\(\Rightarrow\frac{3}{n^2+1}\in Z\)
\(\Rightarrow3⋮n^2+1\)
Hay \(n^2+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta lập bảng
n + 1 2 n 1 -3 3 -1 0 O 2 O
Vậy \(x\in\left\{0;\sqrt{2}\right\}\)
ấy n là số tự nhiên mà quên x không có giá trị