Cho 2 hàm số P y=x2 và d -y=mx-4 A. Vẽ P và d khi m=4 B. Tìm m để p và d tiếp xúc nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
x^2-2x+m-1=0
Δ=(-2)^2-4(m-1)=4-4m+4=-4m+8
a: Để (P) và (d) tiếp xúc thì -4m+8=0
=>m=2
=>x^2-2x+1=0
=>x=1
=>y=1
b: Để (P) cắt (d) thì -4m+8>0
=>m<2
a,phương trình hoành độ giao điểm của (P) và (D) là:
x2 = mx - m + 1 (1) \(\Leftrightarrow\) x2 - mx + m - 1 = 0
\(\Delta\) = m2 - 4m +4 = (m - 20)2\(\ge\)0 với mọi giá trị của m
\(\Rightarrow\) phương trình (1) luôn luôn có nghiệm hay (D) và (P) luôn luôn có điểm chung voeí mọi giá trị của m
b,(D) tiếp xúc với (P) khi (1) có nghiệm kép hay :
\(\Delta\) = ( m - 2 )2 = 0 \(\Leftrightarrow\) m = 2
lúc đó phương trình củađường thẳng (D) là : y = 2x -1
c, tự vẽ đồ thị nha
trên đồ thị ta thấy (P) và (D) tiếp xúc nhau tại điểm A (1;1)
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(m-1\right)x-m=0\)
\(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-x_2=2\\x_1+x_2=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=m+1\\x_1-x_2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m+\dfrac{1}{2}\\x_2=\dfrac{1}{2}m+\dfrac{1}{2}-2=\dfrac{1}{2}m-\dfrac{3}{2}\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m\)
\(\Leftrightarrow-m=\left(\dfrac{1}{2}m+\dfrac{1}{2}\right)\left(\dfrac{1}{2}m-\dfrac{3}{2}\right)\)
Đến đây bạn chỉ cần giải phương trình bậc hai là xong
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-4=0\)
\(\Leftrightarrow x^2+4mx+16=0\)
\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)
Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0
=>m=2 hoặc m=-2
a: Khi m=4 thì y=4x-4
b: PTHDGĐ là:
x^2-mx+4=0
Δ=(-m)^2-4*1*4=m^2-16
Để (P) tiếpxúc với(d) thì m^2-16=0
=>m=4 hoặc m=-4
E cảm ơn ạ