K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Đề thiếu. Bạn viết lại đề cẩn thận, rõ ràng để mọi người hỗ trợ tốt hơn bạn nhé.

9 tháng 2 2022

\(x^2+2y^2+2xy+2y+2020\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)+2019\)

\(=\left[\left(x+y\right)^2+\left(y+1\right)^2+2019\right]\ge2019\)

Vì \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\forall x,y\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

 

9 tháng 2 2022

undefined