Bài 1:Tam giác ABC có trọng tâm G. Đường thẳng d đi qua A cắt đoạn BC tại D.GIả sử khoảng cách của B và C so với đường thẳng d lần lượt là 25cm và 7cm,vậy khoảng cách của G với đường thẳng d là bao nhiêu cm?
Giúp em vs em cần gấp lắm!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Kí hiệu các điểm như trên hình.
Qua G' kẻ đường thẳng song song với BB' và CC', cắt d tại O
Dễ thấy BB'C'C là hình thang có OG' là đường trung bình => BB'+CC' = 2OG' (1)
Mặt khác dễ dàng c/m được tam giác AA'G đồng dạng tam giác GG'O (g.g)
=>\(\frac{AA'}{OG'}=\frac{AG}{GG'}=2\Rightarrow AA'=2OG'\left(2\right)\)
Từ (1) và (2) suy ra AA' = BB' + CC' (đpcm)
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC=6/2=3cm
AH=căn 5^2-3^2=4cm
b: Gọi giao của BG với AC là M
=>M là trung điểm của AC
AG vuông góc BC
EC vuông góc BC
=>AG//CE
Xét ΔMAG và ΔMCE có
góc MAG=góc MCE
MA=MC
góc AMG=góc CME
=>ΔMAG=ΔMCE
=>AG=CE