Cho M= 1+3+3^2+3^3+..+3^118+3^119
Chứng minh rằng M chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1+3+3^2+......+3^117+3^118+3^119
M=3^0+3^1+3^2+......+3^117+3^118+3^119
M có số hạng là:
(119-0):1+1=120(số)
Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng
Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119
M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)
M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)
M=3^0.13+......+3^117.13
M=13.(3^0+.....+3^117)
=>M chia hết cho 13
Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)
\(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=13+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{117}.13\)
\(=13.\left(1+3^3+...+3^{117}\right)\text{chia hết cho 13}\)
=> M chia hết cho 13 (Đpcm).
dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay
se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)
=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13
vậy M chia hết cho 13
tick cho mình nhé!
M=1+3+3^2+3^3+...+3^98+3^99+3^100
M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
M=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy M chia hết cho 13
HT
*Sửa đề*
M = 1 + 3 + 32 +....+ 3100
M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)
M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)
M = 13 . 1 + 13 . 33+ ...... + 13 . 398
M = 13 . ( 1 + 33 +....+ 398)
=> M chia hết cho 13
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
a)M=1+3+3^2+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)
=1x13+3^3x13+...+3^117x13
=13x(1+3^3+...+3^117)
Vậy M chia hết cho 13
a)M=1+3+3^2+...+3^118+3^119
M =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
M =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)
M =1x13+3^3x13+...+3^117x13
M =13x(1+3^3+...+3^117)
Vậy M chia hết cho 13
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván