Parabol \(y=ax^2+bx+2\) đi qua điểm M ( 2 ; 3 ) và N ( -1 ; 4 ) có phương trình là :
A . \(y=x^2+x+2\)
B . \(y=\dfrac{5}{6}x^2-\dfrac{7}{6}x+2\)
C . \(y=2x^2-\dfrac{7}{2}x+2\)
D . \(y=x^2-x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\ne0\)
a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)
\(\Rightarrow y=3x^2-36x+96\)
b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
4A
5. \(\left\{{}\begin{matrix}a+b+2=5\\4a-2b+2=8\end{matrix}\right.\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x^2+x+2\)
6. \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\24a-16a^2=16a\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
7. \(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) \(\Rightarrow y=x^2-x-1\)
8.
a/ \(AM=\sqrt{2}\)
b/ \(AM=\sqrt{10}\)
c/ Không thuộc đồ thị
d/ Không thuộc đồ thị
Đáp án A đúng
Theo mk thì cứ thay vào r ghpt
Vì \(M\left(1;5\right)\in\left(P\right)\)
Thay x=1;y=5
\(a+b+2=5\Leftrightarrow a+b=3\)
tương tự
\(4a-2b+2=8\Leftrightarrow4a-2b=6\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Rightarrow a+2b=2+2=4\)
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Do (P) qua A;B;C, thay tọa độ A, B, C vào pt (P) ta được:
\(\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-3\end{matrix}\right.\)
\(\Rightarrow\left(P\right):\) \(y=x^2+x-3\)
Ta có:
Prabol đi qua điểm M(2;3) và N(-1,4)
=> \(\left\{{}\begin{matrix}4a+2b+2=3\\a-b+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{6}\\b=-\dfrac{7}{6}\end{matrix}\right.\)
=> chọn B